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ABSTRACT 

 

Supercapacitors have emerged in recent years as a promising energy storage technology.  

The main mechanism of energy storage is based on electrostatic separation of charges in a region 

at the electrode-electrolyte interface called double layer. Various electrode materials including 

carbon and conducting polymers have been used in supercapacitors. Also, supercapacitors offer 

high life cycle and high power density among electrochemical energy storage devices. Despite 

their interesting features, supercapacitors present some disadvantages that limit their 

competitivity with other storage devices in some applications. One of those drawbacks is high 

self-discharge or leakage. The leakage occurs when electrons cross the double layer to be 

involved in electrochemical reactions in the supercapacitor’s electrolyte. In this work, the first 

research project demonstrates that the addition of a very thin blocking layer to a supercapacitor 

electrode, can improve the energy storage capability of the device by reducing the leakage. 

However, the downside of adding a blocking layer is the reduction of the capacitance. A second 

project developed a mathematical model to study how the thickness of the blocking layer affects 

the capacitance and the energy density. The model combines electrochemical and quantum 

mechanical effects on the electrons transfer responsible of the leakage. Based on the model, a 

computational code is developed to simulate and study the self-discharge and the energy loss in 

hypothetical devices with different thicknesses of the blocking layer. The third research project 

identified the optimal amount of a surfactant (Triton-X 100) that had a significant effect on the 

double layer capacitance and conductivity of a spin-coated PEDOT:PSS (poly(3,4-
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ethylenedioxythiophene): poly(styrenesulfonate)) electrode. The effect of the concentration of 

the surfactant was investigated by measuring the electrochemical properties and the conductivity 

of different electrodes. The electrodes were fabricated with different concentrations of the 

surfactant. Scanning electron microscopy characterizations confirmed the structural change in 

the PEDOT:PSS that contributed to the capacitance and conductivity enhancement. A final 

research project proposed an approach on how to utilize the modified PEDOT:PSS added to 

different photoactive dyes to design a photoactive supercapacitor. The new approach showed the 

possibility of using a supercapacitor device as an energy harvesting as well as a storage device. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Energy Crisis 

Due to the depletion and shortage of non renewable fossil fuels based energy sources, a 

serious challenge in the current century is the energy crisis [1]. Also, the emissions of non-

renewable energies (oil, gas, coal) have increased negative impacts on the environment, humans, 

and human activities. Those emissions known as greenhouse-gas emissions are in form of carbon 

dioxide (CO2) (~82%), methane (CH4) (~9%), Nitrous oxide (N2O) (~6%), and fluorinated gases 

(hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) (~3%) according to the United 

States Environmental Protection Agency (EPA) [2]. The greenhouse-gas emissions have 

exacerbated climate change effects [3]. Those effects have increased research efforts towards the 

development of renewable energy sources. 

Research interests towards renewable sources of energy have increased to address the 

energy crisis caused by the shortage fossil fuels energy sources such as natural gas and oil 

coupled with their greenhouse-gas emissions. The new forms of energy are now applied in 

different sectors including transportation for hybrid vehicles and in applications such as wireless 

sensors [4], [5]. Using renewable sources such as photovoltaic panels or windfarms for energy 

harvesting, requires energy storage devices since the captured form of energy (e.g. wind or solar 

energy) is not available all the time.  
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1.2 Supercapacitors 

For electrical and electronic applications, the available types of energy storage devices 

include fuel cells, batteries, electrolytic capacitors, and supercapacitors also known as 

ultracapacitors, or electrochemical capacitors. The mechanism of charge storage in both fuel 

cells and batteries is based on chemical reactions at the electrodes [6], [7]. In contrast, the main 

mechanism of charge storage in supercapacitors is the electrostatic force between charges. 

Batteries and fuel cells have a relatively high energy density compared to supercapacitors, 

however their power density is low [8], [9]. On the other hand, supercapacitors provide better 

energy density compared to electrolytic capacitors and offer a good alternative for batteries in 

applications where high power density (fast charging/discharging capability) is needed [10]. 

Figure 1, known as Ragone plot, shows a comparison of power density and energy density of 

different energy storage devices.  

 

Figure 1 Ragone plot showing the energy density versus power density of supercapacitors 

compared to other energy storage devices 
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In addition to high power density, supercapacitors have large lifetime cycle (~10
6
), are 

environmentally friendly, and can be operated at low temperature [11]. 

In a simplistic form, a supercapacitor is made with two porous electrodes separated by an 

electrolyte containing positive and negative ions (Figure 2). The energy storage can be achieved 

by an electrostatic double layer formed at the electrode-electrolyte interface, or by 

electrochemical charge-transfer reactions. The mechanism behind the charge storage determines 

the type of supercapacitor. There are 3 types of supercapacitors including the Electric Double 

Layer Capacitor (EDLC), the electrochemical pseudocapacitor, and the hybrid capacitor (a 

combination of EDLC and pseudocapacitor)[12]. The scope of this work is mainly focused on 

EDLCs. The device structure and the mechanisms of charge storage are explained in the next 

chapter. 

 

Figure 2  Schematic of a supercapacitor 
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1.3 Motivation of this Work 

Supercapacitor applications have been increasing and diversifying, since its early 

utilization as computer backup power supply in 1978 [13]. Today, supercapacitors are used in 

some consumer electronics, power tools, wireless sensors, and transportation [14]. With 

increasing commercial applications, supercapacitor market is projected to attract 3.5 billion USD 

in revenue by 2020 [15]. At the same time, the supercapacitor global market is also expected to 

grow at a Compound Annual Growth Rate (CAGR) of 26.93% [16]. 

The increasing supercapacitor research interests and technology advancement by many 

research groups and companies have been motivated by this growth. The research efforts are 

aimed at finding new solutions to supercapacitors challenges, paving ways to their usage in new 

or existing applications. A serious disadvantage of supercapacitors, which limits their 

implementation in some practical applications, is their high self discharge. Despite their high 

power density, supercapacitors have high leakage current [17]. In electrical double layer 

capacitors (EDLCs), Faradaic electrochemical reactions can be induced by charge transfer across 

the electrode-electrolyte interface resulting in leakage [18].  

Additionally, among materials used for supercapacitor electrodes, conducting polymers 

have been researched as composite elements with other materials to increase their capacitance 

[19]–[22]. Those materials are developed with synthesis techniques of different levels of 

complexity that could be a serious disadvantage for their industrial production. Conducting 

polymers have the advantages to have low environmental impact, high storage capacity, and low 

fabrication costs [20]. Despite their easy industrial processing and fabrication using techniques 

such as spin coating or inkjet printing [23], [24], conducting polymers such as poly(3,4-

ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) when used as  main electrode 
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material have low double layer capacitance and power due to their low conductivity and compact 

structure [25]. The objective of this research was to improve supercapacitor storage capabilities 

by providing a practical solution to reduce the leakage current and enhancing the capacitance in 

conducting polymer films to be utilized as composite material for photoelectrochemical 

supercapacitors. 

1.4 Scope of Dissertation 

In this dissertation, different research projects are presented. They pertain to the reduction 

of electric double layer capacitors’ self-discharge and the improvement of the double layer 

capacitance of PEDOT: PSS. The basics and theories of supercapacitors used in the research 

projects are briefly reviewed in chapter 2. Chapter 3 presents the techniques used to characterize 

the capacitors developed in different research projects. Chapter 4 discusses the experimental 

results about reducing the self-discharge via application of a blocking layer. The effect of the 

blocking layer has also been studied by developing a theoretical analytical equation and a 

simulation tool in Matlab environment (Chapter 5). In Chapter 6, the effect of adding a surfactant 

(Triton X-100) to PEDOT: PSS has been presented which indicates the capacitance enhancement 

by increasing the polymer porosity. Chapter 7 applies the results of the previous chapter 

combined with a different approach to solar energy generation and storage to develop a novel 

photoactive supercapacitor. Chapter 8 concludes this work and presents its future possibilities.



www.manaraa.com

 

6 

 

 

 

 

 

 

CHAPTER 2: BACKGROUND 

 

2.1 Historical Overview 

Supercapacitive electrochemical energy storage was known since 1850’s [26] with the 

theoretical investigation of the Electric Double layer by German Physicist Hermann L. F. von 

Helmholtz [27]. Since their accidental discovery in General Electric laboratories in 1950’s and 

their first commercial applications in the 1970's, real interest for supercapacitors have started to 

increase from the 1990's due to their ability to provide a high burst of power needed for 

acceleration in hybrid vehicles [28]. In 1957, Howard I. Becker designed an electrochemical 

capacitor using porous carbon [29] which he mistakenly called electrolytic capacitor. Almost a 

decade later (1966), engineers and scientists at Standard Oil of Ohio (SOHIO) developed another 

similar electrochemical capacitor. SOHIO sold the technology to NEC (Nippon Electric 

Company, Japan) who introduced its first commercial application as backup power for computer 

memory in 1971 [26]. NEC coined the electrochemical capacitor "Supercapacitor" because of the 

high capacitance exhibited [30]. Since supercapacitors are essentially electrochemical cells, the 

basic of electrochemistry is reviewed in this chapter as the background for the research work 

presented in the following chapters.  

2.2 Electrochemical Reaction 

2.2.1 Redox Reaction 

A redox reaction is an electrochemical reaction that generally involves electrons transfer 

[31]. It combines two half reactions including an oxidation and a reduction that may occur 
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simultaneously [32], [31]. The reaction in which a material loses electron is called oxidation and 

when the material gains electrons, it is called reduction. Essentially, the oxidation state  of the 

material changes in a redox reaction [33]. 

A redox potential (or reduction potential) is a quantification method used to measure a 

chemical element affinity to electrons.   It can therefore be used to determine the redox behavior 

of a chemical substance or reaction. The redox potential of a redox reaction is a potential at 

which the redox reaction can occur and it is a combination of both reduction and oxidation half 

reaction potentials. In standard (or equilibrium) conditions [31], [32] the reduction potential Eo 

across a cell between the anode and the cathode is given by:  

 

                                                                                                                                      (1) 

 

where Eo ox  is the oxidation half reaction potential at the anode and Eo red  the reduction half 

reaction potential at the cathode. 

2.2.2 Nernst Equation 

Let’s assume a chemical system governed by the electrochemical reaction Ox+e Red 

where Ox is the oxidized and Red the reduced species. The reaction quotient Qr is given by [32]–

[34]: 

 

                                                                     
     

    
                                                                   (2) 

 

where {Red} and {Ox} are the respective concentrations of species Red and Ox. 
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The redox potential of the system E is given by the Nernst equation [31], [34], [35] in this 

form:  

 

                                                                            
  

  
  Qr                                                   (3) 

 

where R is the gas constant (8.314 J mol
-1

 K
-1

), T the temperature (
o
K), Qr the reaction quotient, 

n the number of electrons, and F the Faraday constant (96500 C). 

At equilibrium concentrations, E=0 which gives:  

 

                                                                    
  

  
  Qr                                                                (4) 

 

2.2.3 Electrons Tunneling in Quantum Mechanics  

In redox reactions, electron transfers are involved between electrochemical species. 

When electrons face a potential barrier, their transfer rate is affected. Let's consider an electron 

with an energy U facing a potential barrier, V. According to classical mechanics, the electron can 

only "go over" the potential barrier if U > V [36]. In quantum mechanics, however, the electron, 

due to its dual property to behave as a particle as well as a wave (called wave-particle duality  

[37], [38]), has a certain probability to tunnel through the potential barrier [39] (Figure 3). The 

probability of the tunneling is related to the electron wavefunction   (i.e. the function that 

describes the quantum property of the electron) along x direction that can be found by solving the 

Schrodinger equation at the barrier in this form [40]: 
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                                                            (5) 

 

where m is the mass of the electron and ħ is the reduced Planck constant.  

The solution to Equation (5) when V > U is given by: 

 

                                                                                                                                         (6) 

 

where                                                           
       

                                                               (7) 

 

The solution of the wave function at the potential barrier shows an exponentially decay 

along x which suggests exponential drop of the tunneling rate for a redox reaction in presence of 

an energy barrier layer. 

 

 

Figure 3  Schematic of electron tunneling in quantum physics  
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2.3 Different Types of Electrochemical Capacitors 

Supercapacitors can be classified into three types: Electrical Double Layer Capacitors 

(EDLCs), pseudo capacitors, and hybrid capacitors. EDLCs have generally carbon based 

electrodes and store energy by electrostatic adsorption of charges at the interface of the 

electrodes and electrolyte. Ionic charges adsorb in the electrolyte while electronic charges 

accumulate in the electrode forming what is called the electric double layer. Pseudo capacitors 

achieve their energy storage by electrochemical reactions at the interface. Hybrid capacitors 

combine the double layer and the Faradic reactions to store energy [41]–[44]. 

2.3.1 Electrical Double Layer Capacitors (EDLCs) 

Most of the commercially available EDLCs are composed with two highly porous carbon 

electrodes in an electrolyte separated by an insulator (Figure 2). The mechanism of energy 

storage is based on electrostatic adsorption of charges at the interface of the electrode and 

electrolyte [45].  During charging of the capacitor, positive and negative ionic charges in the 

electrolyte are separated and adsorb respectively to the negative and positive electrodes.  Figure 

4 shows a simplified view of the layers of charges (electric double layer) that form at the 

interface of one electrode. 

Due to their energy storage mechanism that relies on the formation of the double layer at 

the interface of the electrode and electrolyte, EDLCs can be well understood by analogy with a 

simple parallel plate capacitor. Consequently, the capacitance of an EDLC taken from one 

electrode can be given by:  
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                                                               (8) 

 

where C is the capacitance, ε the dielectric constant of the double layer, ε0 the dielectric constant 

of vacuum (8.85 x10
-12

 F.m
-1

), A the actual surface of the electrode, and d the double layer 

thickness. 

Different theories have been proposed to explain the double layer that forms when two 

charged conductors are in close proximity. They include the Helmholtz model, the Gouy-

Chapman model, the Stern and Graham models, and the Bockris, Devanathan, and Muller 

(BDM) model. 

 

Figure 4  Schematic of the double layer formed by two planes (IHP=Inner Helmholtz plane and 

OHP=Outer Helmholtz plane) where ions are adsorbed to the electrode-electrolyte interface. 

(Adapted from [31]) 
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2.3.1.1 Helmholtz Model 

The idea of an electrical double layer was first introduced by Helmholtz in 1853. When a 

charged conductor (electronic charges) is in contact with an electrolyte (ionic charges), an 

electrostatic charge separation between two layers of opposite charges occurs at the electrode- 

electrolyte interface. The two layers are apart by only the thickness of one molecule. In this case, 

there is no electron transfer between the layers [46], [47]. Hence, the capacitance of a Helmholtz 

double layer can be found from Equation (8). 

Although the model developed by Helmholtz does not consider the effect of ions behind 

the first layer of directly adsorbed ions at the interface, it is widely used due to its simple image 

which explains the capacitance of an EDLC. 

It should be noted that the Helmholtz model works better in electrolytes with high ion 

concentration. This is mostly the case for EDLCs. 

2.3.1.2 Gouy and Chapman Model 

Gouy (1910) and Chapman (1913) developed the model separately to describe the 

dynamics of ions close but not adsorbed to the interface (the diffuse layer) and considered the 

thermal motion of ions in the electrolyte (see Figure 5). 

The model known as the diffuse double layer showed that different parameters such as 

the applied potential, the concentration of ions in the electrolyte, and their thermal motion affect 

the capacitance of the double layer [48].  To find the total amount of the charge in the diffuse 

layer and the ion distribution in space, Poisson equation (9) and Boltzmann equation at both 

positive and negative electrodes (10, 11) must be solved [49]: 

 

 



www.manaraa.com

 

13 

 

                                                                       
   

   
 

    

 
                                                              (9) 

 

                                                                             
      

  
                                            (10) 

 

                                                                            
      

  
                                             (11) 

 

where ρ is the volumetric charge density, Φ the electric potential, and ε the dielectric constant; 

N+ (N-) the concentration of ions in the diffuse layer, N+0 (N-0)  the concentration of ions in the 

bulk solution, n+ (n-)  the valence of the ions, and T the absolute temperature (e= 1.602 x 10
−19

 C, 

k=1.38x10
−23

 J/K). 

2.3.1.3 Stern and Graham Model 

Stern developed the model in 1923 which included both Helmholtz and Gouy-Chapman 

models. His model separated the double layer into two regions, a uniform region of ions close to 

the electrode (stern layer), and a diffuse layer reaching into the bulk of the electrolyte [50] 

(Figure 5.c). 

Graham added in 1947 the specific adsorption of ions to the Stern model. The Stern-

Graham model include three layers: the inner Helmholtz plane (IHP), the outer Helmholtz plane 

(OHP), and the diffuse layer [51].  

The capacitance of the Stern-Graham model can be found by applying the Langmuir 

theory [49]: 
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                                                           (12) 

 

where Cs is the capacitance of the Stern layer (obtained with Equation 8), Cd the capacitance of 

the Gouy-Chapman diffuse layer, σ the surface charge density on the electrode, and σA  the 

surface charge density of the specifically adsorbed ions. 

2.3.1.4 Bockris, Devanathan, and Muller Model (BDM)  

The BDM model (1963) added to the Stern-Graham model the presence of solvents 

molecules. Using water as solvent, they showed that some of the water molecules were adsorbed 

at the interface inside the inner Helmholtz plane. The alignment of the dipole of water molecules 

would be different depending on their distance from the electrode. Molecules close to the 

electrodes would have fixed dipole alignment due to their proximity with the electronic charges 

in the electrode [49]. Figure 5 shows the different double layer models discussed above. 

 

Figure 5  Schematic of the double layer models. (a) Helmholtz model, (b) Gouy- 

Chapman model, (c) Stern model, and (d) Bockris, Devanathan, and Muller (BDM) 

model (IHP=Inner Helmholtz plane and OHP=Outer Helmholtz plane).  o is the electrode 

surface potential and   is the potential at the electrode-electrolyte interface. (Adapted from [49] 

and [51]) 
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To understand charge storage and discharging mechanisms of EDLCs, a simple electrical 

model is often used [41], [52] (Figure 6), where C is the capacitance (representing the capacity 

for charge storage in all the layers in a double layer structure), Rs is the equivalent series 

resistance and Rp is the discharge parallel resistance (the resistance through which the capacitor 

self discharges). In double layer capacitors, self-discharge occurs when the electronic charges on 

the electrode pass through the electrode-electrolyte interface to engage in electrochemical 

reactions in the electrolyte [52]. 

 

Figure 6  Simple electrical model of the double layer 

 

2.3.2 Pseudocapacitors 

Pseudocapacitors are the second type of electrochemical capacitors that rely on faradic or 

electrochemical reversible redox reactions to store energy. This type of storage mechanism is 

called Pseudocapacitance. The electrode materials are mostly made with transition metal oxides 

(e.g. ruthenium oxide, manganese oxide) and conducting polymers (e.g. PEDOT:PSS, 

Polypyrrole, Polyaniline etc). The Faradic (electrochemical) reactions occur at or close to the 

surface of the electrodes and can be classified into three different types [53]–[55]. 

The types of faradic reactions that can induce pseudo capacitance include:  underpotential 

deposition (adsorption pseudocapacitance), redox pseudocapacitance, and intercalation pseudo 

capacitance [53] (Figure 7). 
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Underpotential deposition exists when reversible adsorption and removal of atoms occur 

at the surface of a metal in a two dimensional faradic reactions. Redox pseudocapacitance arises 

when reversible faradic redox reactions happen at the surface of the electrode. Intercalation 

pseudocapacitance is the type of pseudocapacitive effect where ions (lithium ions for example) 

are electrochemically intercalated into structured layers of redox material [56].  

 

Figure 7  Schematic of different types of pseudocapacitors. (a)  underpotential deposition, (b) 

redox pseudocapacitors, (c) intercalation pseudocapacitor. Adapted from [53] 

 

Although the three pseudo capacitive mechanisms are physically different, they are all 

electrochemically governed by the Nernst equation [31], [41], [53]. When the potential E can be 

approximated by a linear function of (1+Qr)/Qr, the gravimetric capacitance Cm can be obtained 

by [53]: 

 

                                                                           
  

 
 

         

 
                                             (13) 

 

where m is the molecular weight of the active material. 
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2.3.3 Hybrid Capacitors 

Another type of supercapacitor is the hybrid capacitor. They combine the features of 

EDLCs and pseudocapacitors. The electrodes of these types of capacitors are made with 

composite materials including a double layer material (e.g. carbon or graphene) and a pseudo 

capacitive material (e.g. conducting polymer, transition metals etc.). Table 1 presents a summary 

of some of those types of capacitors found in literature [57]. They can also be asymmetric with 

one double layer electrode and one pseudo capacitive electrode or structured layers of double 

layer and pseudocapacitive electrodes [42]–[45]. 

 There are different types of supercapacitors. They can be classified based on the 

electrochemical phenomena behind the storage. Despite the different types of supercapacitors, 

the electrochemical parameters used to evaluate their performance are the same. The next chapter 

presents briefly the techniques, tools, and equipment used to fabricate and assess the 

supercapacitors fabricated in the scope of this dissertation. 

 

Table 1  Hybrid supercacitors with the electrode material, the capacitance per mass, and the 

energy/power density. Adapted from [57]. 

Material Capacitance per mass 
Energy/power 

density 

Single-walled carbon 

nanotubes/ Polypyrrole 

[58] 

200 Fg
−1 

 ( Electrolyte: 

1M NaPF6) 
NA 

Polyaniline –Carbon 

nanotube composites [59] 

597.82 ( Electrolyte: 1M 

H2SO4) 
NA 

Graphene–activated carbon 

Composite [60] 

122  Fg
−1

 (Electrolyte: 

aqueous KOH) 

52.2 Wh kg
-1

 

 

Graphene and carbon 

nanotube composite [61] 

290.6 Fg
−1 

 and 201.0 F/g
 
 

(Electrolyte: 1M KCl,1M  

 tetraethylammonium 

tetrafluoroborate  in 

propylene carbonate 

(TEABF4/PC)) 

62.8 Whkg
-1

 

58.5 kWkg
-1
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Table 1 (Continued)  

Nanorod-Polyaniline–

Graphene [60]  

878.57 Fg
−1

 (Electrolyte: 

HClO4) 
NA 

Flexible 

Graphene/Polyaniline 

Nanofiber Composite [61] 

210 F g
−1

 NA 

Graphene-conducting 

polymer [21] 

300–500 Fg
−1

 

(Electrolyte: 1M HCl) 
NA 

Graphene/Polyaniline 

Nanofiber Composites [62] 

480 Fg
−1 

 (2M H2SO4 

aqueous) 
NA 

Graphene/polyaniline [63] 
1126 Fg

−1 
(Electrolyte: 

1M H2SO4) 

37.9 Whkg
-1

 at 

141.1W/kg 

Graphene–

polyethylenedioxythiophen

e [64] 

374 Fg
−1 

 ( Electrolyte 2M 

HCl) 
NA 

Graphene–Polypyrrole 

nanocomposite [65] 

417 Fg
−1 

 (Electrolyte: 2M 

H2SO4) 

94.93 W h kg
−1

 and 

3797.2 Wkg
−1

 

Graphene/Polypyrrole [66] 
424 Fg

−1 
 (Electrolyte:  

H2SO4) 
NA 

Graphene/MnO2 [67] 
256 Fg

−1 
(Electrolyte: 

0.5M aqueous Na2SO4) 
NA 

Graphene/polypyrrole 

nanotube/MnO2 [68] 

469.5 Fg
−1 

(Electrolyte: 

Na2SO4) 
NA 
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CHAPTER 3: ELECTROCHEMICAL PARAMETERS, TEST TECHNIQUES, TOOLS, 

AND INSTRUMENTS USED 

 

3.1 Introduction 

Although there are different types of electrochemical capacitors, their performance can be 

assessed using electrochemical techniques. The electrochemical test techniques allow the 

measurement of the supercapacitors electrochemical characteristics such as the capacitance, the 

energy, and the power. The main electrochemical techniques used are the Current voltammetry 

(CV), the galvanic pulse, the Electrochemical Impedance Spectroscopy (EIS), and the Open 

Circuit Potential (OCP). 

As different research activities were completed as part of this dissertation, some 

fabrications, measurement methods, and equipment were also designed and developed. This 

chapter presents briefly all the tests techniques and equipment used and developed, as well as the 

key electrochemical parameters of supercapacitors. 

3.2 Supercapacitors Electrochemical Parameters 

3.2.1 Capacitance 

The capacitance, C, of an electrical system can be defined as the amount of charge ΔQ it 

can store at a potential difference ΔV. For an EDLC, the capacitance C is constant and given by: 

 

                                                                            
  

  
                                                               (14) 
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To compare the capacitance across different devices, materials, and technologies, the 

concept of specific capacitance is introduced. It is the capacitance of a device or electrode per 

unit mass (Cm [F/g]) or volume (Cv [F/m
3
]. Although Cm and Cv can demonstrate the potential 

of a material to be used in a device, the capacitance of a specific electrode can be presented 

based on the normalized capacitance to the apparent surface area of the electrode (CS [F/m
2
]). 

3.2.2 Energy 

The energy of a supercapacitor is proportional to the capacitance and is given by: 

 

                                                                         
 

 
                                                          (15)   

 

The specific energy is measured gravimetrically (per unit of mass), However the energy 

density is measured volumetrically (per unit of volume) [69]. 

3.2.3 Power 

The power of a supercapacitor is the amount of energy delivered per unit of time. It is a 

very important parameter since one of the main attractions of EDLCS is the high power density 

compared to batteries. Similarly to the capacitance, the power can measured gravimetrically (per 

unit of mass), or volumetrically (per unit of volume) [70]. 

The maximum power that can be delivered by an EDLC is limited by its series resistance 

and given by [71]: 

 

                                                                                
 

 

  

  
                                                     (16) 
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Certain electrochemical techniques can be used to evaluate supercapacitor parameters.  

The most commonly used techniques are: cyclic voltammetry, galvanostatic, impedance, and 

open circuit voltage measurements. 

3.3 Electrochemical Analysis Techniques 

To characterize supercapacitors, electroanalytical techniques are used. The techniques are 

designed to measure different electrical parameters such as potential, current, charge, or 

frequency of the device under test in an electrochemical environment. The cell or device under 

test is called an electrochemical cell which can be in two or three electrodes configuration. The 

two electrodes setup has a working electrode (WE, the electrode of interest) and a counter 

electrode (CE) which completes the circuit. In a three electrode configuration, an additional 

electrode called reference electrode (RE) is added to the system. The reference electrode is 

designed to have no current flow and a constant voltage [31], [72]. It should be noted that the 

three probe configuration is more useful for studying the interface between an electrode (WE) 

and the electrolyte. Also, it is used for supercapacitor material characterization. The two probe 

approach however is toward a device study.  

3.3.1 Cyclic Voltammetry Technique 

Voltammetry is a simple but strong method of electrochemical analysis techniques that 

measures the current induced by a cell under test as function of the applied voltage. Among 

voltammetry techniques, cyclic voltammetry (CV) is the most widely used to determine how 

charges behave at an electrode-electrolyte interface in a specific potential range [73].  

In cyclic voltammetry, the potential of the working electrode is scanned back and forth at 

a constant rate (ΔV/Δt) in a potential window for several cycles. The resulted current data, i, is 
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measured and plotted as a function of the voltage. CV is a very useful and simple tool to study 

the capacitance, particularly for EDLCs [52], [74]. 

The capacitance of an EDLC given by Equation (14) can be rewritten as follows (since 

the total charge is given by ∫i·dt) [75], [52]: 

 

                                                               
       

  
   

  

  
                                                        (17) 

 

which gives                                       
 

 
  

  
 
 

 

                 
                                                 (18) 

 

It can be seen that the capacitance can be obtained from CV measurement by taking the 

ratio of the current to the voltage scan rate.  

3.3.2 Galvanostatic Technique 

A galvanostatic method is a specific form of a family of electrochemical techniques 

called chronopotentiometry. Chronopotentiometry is an electrochemical technique that analyzes 

the cell under test by controlling the current flow and measuring the effects on its potential over 

time. There are different types of chronopotentiometry methods based on how the current is 

controlled. They include constant current chronopotentiometry, linear current 

chronopotentiometry, current reversal chronopotentiometry, and cyclic chronopotentiometry. 

When a cyclic constant current chronopotentiometry is applied, the method is called galvanic 

pulse [74], [76], [77], and [78]. A voltage drop in the galvanic pulse measurement allows the 

estimation of Rs (Figure 6) by Ohm’s law [74]: 
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                                                              (19) 

 

where ΔVt is the voltage drop across the device and I the amplitude of the current pulse.  

3.3.3 Impedance Technique 

Impedance measurement techniques are the strongest electrochemical technique. They 

are often called Electrochemical Impedance Spectroscopy (EIS). During EIS measurement, the 

impedance of the device under test is analyzed by applying a small alternating current (AC) 

signal to its terminal. The AC current and voltage are measured as a function of the frequency 

and used to compute the complex impedance. The EIS impedance data is generally represented 

using Nyquist and Bode plots. In Bode plot the magnitude and phase angle of the impedance are 

represented as function of the frequency. Nyquist plot shows the imaginary part of the 

impedance as a function of the real part [79]. 

Both Nyquist and Bode plots can give valuable information on the electrical nature of the 

cell under test (inductive, capacitive, or resistive) as well as the porosity of the working electrode 

and other electrochemical parameters [80], [81]. 

3.3.4 Open Circuit Measurements 

Open circuit measurement is used to determine the open circuit voltage of the device 

being tested. During open circuit mode, the instrument used to measure the voltage does not 

control any electrical parameters (voltage, current etc.) of the device and acts as infinite 

impedance. The instrument acts essentially as a voltmeter. The open circuit can be used to 

measure the parallel resistance RP. The total current i in the supercapacitor (Figure 6) is given by: 
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                                                                                                                                         (20) 

 

where IC is the current in the capacitance C and IRp the current in the resistance RP. 

In open circuit mode the supercapacitor is self discharging and i=0, (since IC=-Cdvt/dt 

and IRp=V/Rp) the Equation (20) becomes: 

 

                                                                        
 

  
  

  

  
                                                        (21) 

 

The resistance RP can be obtained by: 

 

                                                                         
 

        
                                                        (22) 

 

where V is the open circuit voltage at a given time and dv/dt the slope of the self discharge curve 

at that time. 

3.4 Tools and Instruments Used 

3.4.1 Electrochemical Instrument 

All the electrochemical measurements used in this dissertation (cyclic voltammetry, 

Galvanostatic pulse, EIS, and open circuit measurements) were performed using the Verstat 

Potentiostat of Princeton Applied Research (PAR) (Figure 9 (a)). 

3.4.2 Solar Simulator 

A solar simulator (RST - Radiant Source Technology) coupled with a dark box was used 

as a setup for testing the response of the photoactive supercapacitors developed in chapter 7 

(Appendix D). The solar simulator delivers a light intensity of 80mW cm
−2

 at AM 1.0. 



www.manaraa.com

 

25 

 

3.4.3 Scanning Electrons Microscope (SEM) and Atomic Force Microscope (AFM) 

The supercapacitor electrodes were characterized with Scanning Electron microscope 

(SEM) and Atomic force Microscope (AFM) to study the topography, structure, and profile of 

their surfaces. An SEM is an electron microscope that can obtain nanoscale images of conductive 

surfaces using focused electrons’ beams [82]. Atomic Force microscope (AFM) is used to study 

surfaces morphology and topography by measuring the force on a nanoscale sharp tip mounted 

on a flexible cantilever induced by the vicinity of the tip to the surface of the electrode being 

characterized [83]. The intensity of the force is function of the distance of the tip to the surface 

of the electrode sample. Contrary to the SEM, AFM does not require a conductive surface. An 

SEM Hitachi S800 and an AFM Dimension 3000 were used to characterize the electrode 

samples. 

3.4.4 Conductivity Measurements 

The conductivity tests were recorded using a four point probe technique. A four point 

probe method uses four aligned probes in contact with the surface under test. A current is flown 

through the outer probes. A voltage is measured between the two inner probes and the resistivity 

or conductivity of the surface is computed [84]. The conductivity measurements were performed 

with a Keithley source meter (model 2602) unit and a four point probe setup (Figure 9 (e) and 

(f)). 

3.4.5 Test Equipment Developed 

To complete long time consuming experiments such as self discharge experiments, a two 

probes Potentiostat device (Figure 8 (a)) was designed and developed. The device uses a 

National Instrument Data Acquisition tool (USB-1408FS). A code and a graphical user interface 
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(Figure 8 (b)) were developed in Matlab environment to run the potentiostat. The code is 

presented in Appendix E. 

 

(a) 

 

(b) 

 

(c) 

Figure 8  (a) Developed Potentiostat device, with (b) the graphical user interface, and (c) a 

sample of real time data obtained with the device. 
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3.4.6 Other Tools and Instruments Used 

A spin coater (NNRC Laurel Spinner model WS-4008Z-6NPP), a hot plate (Fisher 

Scientific), and an analytical balance (model GH-252) were also used to prepare the electrode 

samples. A spincoater is a device that allows uniform and thin coating of liquid films using 

spinning. As the spin speed is increased, centrifugal forces cause the coating liquid to spreads 

radially over the substrate. A hot plate is used to cure samples at a desired temperature and time. 

The analytical balance was used in all weight measurements. The balance has a precision of 

0.001mg.  Figure 9 shows the pictures of the equipment used. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

  

(g) 

 

(e) 

 

(h) 

  

(f)  

Figure 9  Equipment used 
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3.5 Conclusion 

The tools and techniques used in this dissertation were presented in this chapter. The 

techniques include electrochemical methods, spectroscopy methods, conductivity measurements, 

and simulations methods. The fabrication methods developed for each research activity are 

presented in the experimental section of each chapter. Supercapacitors possess parameters that 

can be measured using several analytical methods and test techniques. The specific type of 

supercapacitor called electric double layer capacitor which is the focus of this dissertation offer 

some advantages such as high power density compared to the other types of supercapacitors. 

Nevertheless, although supercapacitors in general have high power density compared to battery 

and fuel cells, they suffer from high self discharge. The next chapter provides a practical solution 

to limit the leakage and presents the first research project of this dissertation. 
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CHAPTER 4: APPLICATION OF POLY (P-PHENYLENE OXIDE) AS BLOCKING 

LAYER TO REDUCE SELF-DISCHARGE IN SUPERCAPACITORS
1
 

 

4.1 Introduction 

Application of energy storage devices is growing rapidly due to the demand for more 

mobile and wireless electronics. Potentially, supercapacitors are suitable alternatives for batteries 

in applications, where high power density is needed (e.g. wireless devices and electric/hybrid 

vehicles) [10].  Also, supercapacitors have larger cycle lifetime than batteries. A supercapacitor 

can be charged and discharged up to a million times, whereas a typical rechargeable battery can 

be used up to only 1000 cycles [85], [86]. The large cycle lifetime is vital in small electronics 

which are designed to harvest energy from ambient sources. In fact, the market for wireless 

sensors equipped with energy harvesting units is growing rapidly for various applications such as 

structural health and traffic [87]. Despite the advantages, practically, the application of 

supercapacitors is very limited mainly due to high leakage current in the devices. The leakage 

current results in self-discharge effect in supercapacitors and inefficient charging/discharging 

cycles with energy waste during each cycle [86], [88], and [89]. The leakage problem is more 

serious in devices powered by harvesting solar, thermal, or vibration energy. The amount of 

harvested power is usually very low (10–1000 μW [90]). Hence, the amount of current available 

for charging a supercapacitor is limited. If the current value is less than the leakage current, the 

supercapacitor cannot be charged at all. The leakage problem has been investigated extensively  

1
This chapter was previously published in [52]. Permission is included in Appendix A. 
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through modeling [91]–[94] and the electrochemical study of the electrode–electrolyte 

interface [17], [95], [96]. Yet no practical solution has been applied for decreasing the leakage 

current in supercapacitors. In this work, we have studied the application of an ultra-thin 

insulating layer (blocking layer) between the electrode and the electrolyte as a potential solution 

for reducing the leakage current, particularly for wireless sensor applications. 

The most popular form of a supercapacitor is the electrochemical double layer capacitor 

(EDLC) [85].  Figure 10 shows the structure of an EDLC, which is made of two porous 

electrodes in an electrolyte. When a voltage is applied across the device (charging process), ions 

move from the bulk electrolyte toward the electrodes and form double layer charges 

(Figure 11(a)). The double layer mimics a parallel plate capacitor with the solvent material as the 

dielectric, with permittivity of εs, between ionic and electronic charges.  

 
Figure 10  A cross section view and a simplified model for a supercapacitor. 

http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig1
http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig2
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Due to the small distance between the opposite charges (‘d’ in Figure 11(a)), the double 

layer capacitance (CDL=εs/d) is typically in the range of 5–20μFcm
−2 

[85]. To achieve high 

specific capacitance, Csp, (capacitance per mass, Fg-1, or capacitance per volume, F cm−3) in 

supercapacitors, porous electrodes with extremely large surface area are employed. The energy 

can be stored in EDLCs by charging the device. Similar to a capacitor, the energy density is 

equal to 0.5CspV2, where V is the applied charging voltage. Once the device is charged, the 

charge across the double layer has to be preserved to store the energy. However, as shown in 

Figure 11(a), a redox reaction (Faradic reaction) may occur at the electrode surface through 

which electrons pass through the double layer and discharge the capacitor. The effect of the 

Faradic reactions appears as the leakage current, which results in the self-discharge effect. As a 

solution, an ultra-thin layer of an insulating material can be employed on the electrode surface to 

block the electron transfer and reduce the leakage current (Figure 11(b)). 

 

 
Figure 11  Schematics of the electrode–electrolyte interface (double layer charges) in 

supercapacitors. The charge arrangement can be modeled with capacitors. (a) Electrochemical 

reaction at the surface of the electrode results in charge loss. (b) Application of a thin blocking 

layer decreases the reaction rate and enhances the energy storage capability. 

 

For better understanding the effect of the leakage current, a supercapacitor can be 

modeled with an ideal capacitance, Ceq, a series resistance, RS, and a parallel 

http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig2
http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig2
http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig2
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resistance, RP ( Figure 10). Considering a double layer capacitor at each electrode, Ceq is the 

equivalent capacitance of both capacitors in series. RS includes the contact and the electrolyte 

resistances, and RP represents the leakage path. The main source of the leakage current is Faradic 

reactions at the electrode surface [96]. The amount of the leakage current is proportional to the 

reaction rate. The rate of the electron transfer depends on the reduction potential of the redox 

reaction, E0, and the applied voltage, V, across the double layer. The difference 

between V and E0 is known as the overpotential (=V − E0). According to Tafel equation [31], the 

Faradic reaction rate is related exponentially to the overpotential, meaning that the leakage 

current increases exponentially with the increase in the applied voltage. Therefore, RP is a 

function of the applied voltage with the lowest value when the device is charged up to the 

maximum voltage. As a result of the leakage, a typical device loses 10% of the stored energy in 

less than 1 h [97]. In practice, it is recommended to charge supercapacitors to the voltages lower 

than the nominal value for controlling the leakage [98]. However, since the energy density is 

proportional to V2, reducing the voltage decreases the amount of stored energy significantly and 

makes supercapacitors less efficient than batteries for applications with size constraint. 

The electrochemical reaction rate can be lowered by application of an insulating layer 

(blocking layer) on the electrodes. The effect of the blocking layer can be modeled as a 

capacitance, CBL, in series with the double layer capacitance CDL (Figure 11(b)). It should be 

noted that the blocking layer is not hindering the double layer capacitance. The coating increases 

the distance between ionic and electronic charges and provides an energy barrier for Faradic 

reactions. Therefore, the equivalent capacitance isCeq = CBLCDL/(CBL + CDL) which is always 

smaller than CDL. In order to minimize the capacitance reduction, CBL has to be much larger 

than CDL. Due to the very small distance between negative and positive charges in a double layer 

http://www.sciencedirect.com/science/article/pii/S0378775313007702#fig1
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capacitor, this can happen only if an ultrathin (∼1 nm) high dielectric material is applied as the 

blocking layer. It is anticipated to have a CDL in the same range of CBL if a thin layer (1–2 nm) of 

an insulating polymer (εr ≈ 3.5) is applied. In this case, Ceq would be about half of the double 

layer capacitance. The key point in minimizing the capacitance reduction is to deposit an 

ultrathin and uniform layer of the polymer on the electrodes. In this work, a thin layer of poly (p-

phenylene oxide), PPO, on the electrodes was deposited, acting as the blocking layer. 

Electrodeposition is an easy method for coating conductive surfaces with conformal thin films 

[99]. It has been demonstrated that the electrodeposition of PPO can produce a pin-hole free thin-

film layer on conductive. Ultra-thin PPO films are stable in organic and aqueous electrolytes, and 

do not block the formation of an electrical double layer, when deposited on conductive [100]. 

The mechanism of deposition is based on polymerization of a monomer in an electrochemical 

reaction. Due to the low conductivity of PPO, the resistance of the polymer chain increases as the 

film grows. The high resistance leads to formation of a passivation layer, which stops the further 

growth of PPO. The self-limiting growth mechanism generates an ultra-thin film of PPO with a 

thickness of about a few nanometers [101]. Figure 12 shows the phenol monomer and the PPO 

molecule after electropolymerization. 

 
 

Figure 12  Phenol monomer and PPO polymer. 

 

In order to study the morphology and measure the thickness of the blocking layer, a PPO 

layer was first deposited on a glassy carbon substrate (flat and smooth surface). Then surface 

coverage and roughness of the PPO layer were studied using atomic force microscopy (AFM), 

and the thickness was estimated from an electrochemical impedance spectroscopy (EIS) 
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experiment. After that, the surface of two activated carbon electrodes was coated with a layer of 

PPO, and the electrodes were utilized to make a supercapacitor. Also, another capacitor was 

fabricated with no coating. Ceq, RP and RSwere measured in both devices through 

electrochemical experiments, including cyclic voltammetry (CV), open circuit voltage 

measurement, and galvanic pulses. The difference between the parameters in both devices has 

been discussed, which indicates the effect of the blocking layer on the performance of a 

supercapacitor. 

4.2 Experimental 

The electrochemical experiments were performed using a VersaSTAT 4 (Princeton 

Applied Research) potentiostat. Activated carbon electrodes from Y-Carbon (www.y-carbon.us) 

and glassy carbons from SPI Supplies (www.2spi.com) were used as the electrodes. All the other 

chemicals were purchased from Sigma and used without further purification. 

4.2.1 PPO Electrodeposition 

The developed method explained by Rhodes et al., has been modified for PPO [101]. The 

phenylene oxide monomer solution was prepared with 50 mM tetramethylammonium hydroxide, 

0.1 M tetrabutylammonium perchlorate, and 50 mM phenol solvated in propylene carbonate. The 

PPO deposition was performed in a three electrode cell configuration with Ag/AgCl reference 

electrode and a coiled Pt wire as the counter electrode. The working electrode was either a glassy 

carbon (area of ∼0.5 cm
2
) or pieces of activated carbon each with apparent surface area of 

0.5 cm
2
. Cyclic voltammetry (CV) technique was applied for PPO [101]. The working electrode 

potential was scanned for 22 cycles between −45 mV and +955 mV versus Ag/AgCl with the 

scan rate of 50 mV s
−1

. After the electrodeposition, the electrodes were rinsed with propylene 

carbonate. 
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4.2.2 Atomic Force Microscopy (AFM) 

The morphology of the glassy carbon electrode before and after PPO electrodeposition 

was studied with tapping mode AFM (Digital Instruments) in air. AFM probes with a resonant 

frequency of ∼300 kHz was employed in the measurements. 

4.2.3 Electrochemical Impedance Spectroscopy (EIS) 

EIS measurement was performed on the glassy carbon electrode before and after PPO 

deposition to investigate the effect on capacitance and leakage current, and measure the thickness 

of the blocking layer. The EIS tests were performed in three probe setup with Ag/AgCl reference 

and the Pt counter electrodes. The electrolyte was a solution of 1 M tetrabutylammonium 

hexafluorophosphate (TBAP) in propylene carbonate. The experiments were conducted in the 

range of 10 mHz–100 kHz with AC amplitude of 10 mV and DC bias of 0 V versus open circuit 

potential. 

4.2.4 Device Fabrication and Characterization 

For fabricating supercapacitors, two pieces of activated carbon, each with apparent 

surface area of 0.5 cm
2
, were used. The glassy carbon electrodes were used as the back contact 

for current collection. A mesh of polyester was applied as a separator between the activated 

carbon electrodes. A custom-made Teflon screw-clamp was developed and used to press 

activated carbons to the back contact electrodes, while the electrodes were immersed into the 

electrolyte solution containing 1 M TBAP in propylene carbonate. A picture of the setup is 

shown in Figure 13. To test the effect of the blocking layer, activated carbon electrodes with and 

without PPO deposited layer were tested. The devices were characterized by multiple cyclic 

voltammetry, open circuit self-discharge study, and galvanic pulses. 
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Figure 13  A picture of the fabricated supercapacitor. 

 

4.3 Results and Discussion 

4.3.1 PPO Deposition and Characterization 

In order to gain high specific capacitance, porous electrodes are commonly employed to 

fabricate supercapacitors. However, studying the quality and estimating the thickness of the 

blocking layer on a porous electrode is challenging. Therefore, first we have deposited PPO on a 

smooth glassy carbon electrode. The blocking layer was deposited on the electrode by multiple 

cyclic voltammetry (CV) for 22 cycles (Figure 14). The CV result is similar to the previous 

results reported by Rhodes et al.  [101]. The current decrease in every cycle demonstrates the 

deposition of the PPO layer and the growth of the insulating layer [101]–[103]. The morphology 

of the glassy carbon electrode before and after PPO deposition was studied using AFM. As 

shown in Figure 15, the morphologies were quite different. The surface of the glassy carbon 

electrode showed a smooth microstructure with root-mean-square (RMS) roughness of 

∼1.67 nm, while the roughness is increased to ∼3.66 nm after the deposition (Figure 15(a) and 

(b)). The electropolymerized PPO film showed a well-uniform coherent layer on top of the 

glassy carbon electrode over a 500 × 500 nm
2
 area (see step height measurement results in the 
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Supplementary materials in Appendix B). Comparing the phase images of the glassy carbon 

electrodes with (Figure 15 (d)) and without (Figure 15 (c)) the coating shows a uniform 

electropolymerization of PPO on the electrode surface. The surface coverage of the glassy 

carbon electrode was also studied in a 10 × 10 μ
2
 area (see the Supplementary material for 

further details in Appendix B). 

 

Figure 14  Electrodeposition of PPO on a glassy carbon electrode using CV method (scan rate 

50 mV.s−1); the decrease in the current with subsequent scans indicates the growth of the 

insulating layer. 

 

The deposited layer was further characterized using the electrochemical impedance 

spectroscopy (EIS) method. The magnitude and phase of the impedance for the glassy carbon 

electrode before and after PPO deposition are shown in Figure 16. In order to analyze the 

frequency response of an electrochemical cell, a more complicated model than the one shown 

in Figure 10 is required. At very low frequencies, the impedance is under the influence of a non-

uniform current [104]. 
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Figure 15  AFM topographic and phase images of: (a) and (c) uncoated glassy carbon surface 

and (b) and (d) electro-polymerized PPO on a glassy carbon electrode surface. The images were 

obtained in air using noncontact tapping mode. 

 

This effect cannot be modeled with a resistor–capacitor (RC) circuit, but a constant phase 

element can be considered in parallel to the double layer capacitor. The detail of the model and 

the analysis of the impedance for the full spectrum are provided in the Supplementary materials 

(Appendix B). However, the impedance of the electrode at higher frequencies can still be 

modeled with the simplified RC circuit in Figure 10 Using ZSimpWin software from Princeton 

Applied Research, the impedance of the electrodes with and without the coating was simulated 

for frequencies larger than 10 Hz. The simulation results are also shown in Figure 16. Based on 

the simulation, the values for Ceq, RP, and RS are estimated for both electrodes. The values are 

listed in Table 2. 
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Table 2  Simulated values for Ceq, RP, and RS in the glassy carbon electrode with and without the 

PPO coating. The measured data was obtained from EIS. 

Ceq [μF] 5.543 0.7719 

RP [kΩ] 8.49 30.9 

RS [Ω] 207 128 

 

 

Figure 16  (a) Magnitude and (b) phase of the measured and simulated impedance for the glassy 

carbon electrodes with and without the PPO layer. Simulations were performed based on the 

model in Figure 10 for frequencies between 10 Hz and 100 kHz. A more complicated model has 

been discussed in the Supplementary materials (Appendix B) section which explains the 

behavior of the cells for the entire spectrum.  

 

The result clearly shows that RP was increased and Ceq was decreased after depositing the 

blocking layer. The series resistance is also reduced after the deposition. The PPO thickness (tBL) 

can be estimated from the capacitance change. Considering the model in Figure 11(b), the 
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blocking layer capacitance is estimated to be CBL = 0.8967 μF based on the measured 

capacitance (Ceq = 0.7719 μF) and the double layer capacitance (CDL = 5.5430 μF). 

Since CBL = εPPOA/tBL (where εPPO is the permittivity of PPO –εPPO = 3.5 × 8.85 × 

10
−12

 F m
−1

 [105] – and A = 0.5 cm
2
 is the surface area of the electrode), the PPO thickness is 

estimated to be ∼1.5 nm. This value is consistent with the previously reported thickness for 

electrodeposited PPO by other groups [106]. 

4.3.2 Supercapacitor Characterization 

In order to study the effect of the blocking layer on the performance of a supercapacitor, 

two devices were fabricated and tested: one without PPO coating and the other with 

electrodeposited PPO on both electrodes. The electrode material was activated carbon with high 

porosity. The polymer was deposited on the electrodes with the same method applied for the 

glassy carbon electrode (CV with 22 cycles). As expected, the shape of the curves was similar to 

the one shown in Figure 14 with much larger current, which was due to the larger surface area of 

the activated carbon electrode (the result is not presented). The cells were tested at room 

temperature in a two-electrode configuration using the setup shown in Figure 13. Various 

electrochemical experiments were carried out to estimate Ceq, RP, and RS in both devices. 

The nominal voltage in a single cell commercial type supercapacitor is between 2.3 V 

and 2.75 V [107]. To make a device for that voltage range, chemicals with high level of purity 

should be utilized and a contaminant-free environment is required for the fabrication [106]. Also, 

supercapacitors must be sealed before testing. Any contaminant in the electrolyte, especially 

water/moisture, with the redox potential lower than the nominal voltage would affect the device 

characteristics. Since our experimental setup has not been designed for the best condition, we 

tested the cells with the voltages less than 2.0 V to avoid damaging the electrodes. Voltage of 
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2.0 V is sufficient to supply many low power electronics, including wireless devices [90]. 

However, in this voltage range, a larger leakage current is expected than an off-the-shelf device. 

Since the test conditions were the same for both devices with and without the blocking layer, the 

comparison between the results demonstrates the effect of the blocking layer. 

4.3.2.1 Specific Capacitance Measurement Using Cyclic Voltammetry 

Figure 17 shows the CV curves in the voltage range of ±2 V across the devices at a scan 

rate of 50 mV s
−1

. To obtain the specific current in each cell, the current was normalized to the 

weight of the activated carbon electrodes. The electrode weight was measured precisely before 

and after PPO deposition using an analytical balance. The amount of deposited PPO was 

estimated to be ∼7 mg. The PPO deposited electrodes were completely dried before the weight 

measurement. Since both electrodes are similar, it is expected to have a symmetrical response 

around 0 V. However, the device with the blocking layer is showing small differences between 

positive and negative voltages. This is likely due to the different amount of phenol residue in two 

electrodes of the device. 

In a CV measurement, the loop width represents the overall capacitance; and the effect 

of RP appears in the slope of the loop [31]. As expected, the loop width is smaller in the device 

with the PPO coating, which indicates lower specific capacitance. Also, the change in the loop 

slope implies a lower leakage current for the capacitor with the blocking layer. As a rough 

approximation (assuming RS is much smaller than RP), the specific capacitance can be estimated 

from half of the ratio of the loop width to the scan rate at zero voltage [31]. Using this method, 

the cell with the blocking layer had a capacitance of 5.70 F g
−1

 whereas the capacitance of the 

cell with no coating was 12.99  F g
−1

, which  indicates ∼44% reduction  in the capacitance after  
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Figure 17  Cyclic voltammograms for two supercapacitors: with and without the PPO blocking 

layer. The scan rate was 50 mV s
−1

. 

 

the PPO deposition. In the EIS experiment (Table 2), the capacitance reduced to 14%. The 

smaller change is likely due to the poor coverage of the PPO layer on the porous activated 

carbon electrode. In fact, the specific capacitance in the devices with and without the blocking 

layer implies that the double layer capacitance has to be ∼10.16 F g
−1

 (see the model in Figure 

11), while 1.5 nm thickness of the PPO layer suggests specific capacitance of 13.76 F g
−1

. 

Hence, the surface coverage is estimated to be ∼74% (=10.16/13.76), assuming uniformity in the 

thickness of PPO on the porous electrode. Considering the weight of the electrodes, Ceq was 

measured to be 0.112 F and 0.0897 F for the devices without and with the blocking layers, 

respectively. 

4.3.2.2 Leakage Current Estimation Using Self-Discharge Profile 

Since RP changes with voltage, the leakage current estimation from CV is inaccurate. To 

measure the leakage current at 2.0 V, both cells with and without the blocking layer were first 

charged for 18 h at 2.0 V. At the end of the time, the charging currents reached to stable values 

of ∼200 μA and ∼935 μA for the devices with and without the PPO layers, respectively. These 

current values are considered as the leakage currents required to maintain the capacitor voltage at 
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2.0 V [107]. In order to investigate how the leakage current drains the stored energy, the self-

discharge profile of the devices was studied. Immediately after the charging, the external voltage 

source was automatically removed and the open circuit voltage at the cells' terminals was 

monitored. Figure 18 shows the self-discharge profiles of the cells with and without the blocking 

layers. As expected, the blocking layer reduces the leakage current significantly. After 1 h of 

self-discharge, the cell with the blocking layer displayed a voltage of 1.43 V compared to 1.22 V 

for the cell without any coating. The leakage current, il, was estimated 

from il = Ceq dV/dt (at t = 0) where dV/dt is the slope of the self-discharge profile at t = 0. The 

leakage currents in the devices with and without the blocking layer are estimated to be 220 μA 

and 996 μA, respectively. These values are close to the measured currents at the end of the 18 h 

charging cycle. Knowing the leakage current, the RP values at 2 V were obtained from Ohm's 

law. The resistance values and other parameters in supercapacitors are listed in Table 3. 

 

 

Figure 18  Self-discharge profile in two supercapacitors with and without the blocking layer. 

Both capacitors were charged at 2.0 V for 18 h prior to open circuit voltage measurement. 
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Table 3  The characteristics of the supercapacitors without and with the blocking layer. 

Characteristics Without blocking layer With blocking layer 

Specific capacitance [F g
−1

] 12.99 5.7 

Leakage current (at 2.0 V) [μA] 996 220 

Ceq [F] 0.112 0.0897 

RP (at 2.0 V) [kΩ] 1.97 9.05 

RS [Ω] 66 194 

Voltage (at t = 0 s) [V] 2 2 

Voltage (at t = 3600 s) [V] 1.23 1.44 

Specific energy (at t = 0 s) [J g
−1

] 25.98 11.4 

Specific energy (at t = 3600 s) [J g
−1

] 9.76 5.9 

Specific energy loss in 1 h [J g
−1

]. 16.22 5.5 

 

It should be noted that the leakage current estimation with this method requires a long 

charging time (i.e. 18 h) to assure the diffusion of ions into deep nanopores on the electrodes 

[91]. In a short charging time, only the double layer capacitors at shallow pores are charged. 

Switching to the open circuit mode, a voltage drop occurs due to the redistribution of charges 

between shallow and deep pores [91]. This effect is different from the leakage current produced 

by Faradic reactions at the electrode surfaces. 

4.3.2.3 RS Measurement Using Galvanic Pulses 

Galvanostatic charging/discharging is a common method for RS measurement. In this 

study, ±1 mA current pulses (period of 200 s) were applied to charge and discharge the 

supercapacitors and the voltage across the devices was monitored (Figure 19). The voltage drop 

at the charge/discharge transition divided by the current difference (2 mA) gives the RS value 

(Table 3). The higher resistance in the device with the PPO layer is likely due to the increased 

series resistance between the activated carbon and the current collector (glassy carbon). For 

practical applications, a very low series resistance (less than 1 Ω) is required. The devices 

presented in this work were not optimized for low series resistance. The large observed 

resistances in both devices are mainly due to the mechanical contacts between the activated 
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carbon electrode and the glassy carbon. To eliminate this problem, activated carbon electrodes 

with laminated current collector are recommended for future works. 

 

Figure 19  Galvanic pulses for measuring series resistance in supercapacitors with and without 

PPO layer. Current pulses of ±1 mA with 200 s period were applied to charge and discharge the 

devices. The voltage drop at the transition from +1 mA to −1 mA was measured. The resistance 

was calculated from the voltage difference divided by the 2 mA current difference. 

 

As shown in Figure 19, the voltage increases with time when a supercapacitor is charged with a 

constant current. A small voltage change, ΔV, is expected for a large capacitor. A ΔV of about 

2 V was observed in the capacitor with the blocking layer, while the voltage change was only 

0.8 V in the device without any coating. This again confirms the reduction of specific 

capacitance as the result of the blocking layer. 

4.4 Discussion 

As shown in Table 3, the application of the blocking layer has reduced the 

supercapacitor's leakage current by 78%. However, the specific capacitance was decreased from 

12.99 F g
−1

 to 5.70 F g
−1

. As a result, the specific energy, also known as energy density 

(CspV
2
/2), of the supercapacitor with the blocking layer was lower than that in the device without 

any coating by about 56% at the charging voltage of 2.0 V. As shown in Figure 18, the open 
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circuit voltage of the capacitor without the coating dropped from 2.0 V to 1.23 V in 1 h, whereas 

the voltage change in the device with the blocking layer was only 0.56 V in the same period. 

Therefore, the amounts of the stored energy density after 1 h of self-discharge were 

5.90 J g
−1

 and 9.76 J g
−1

 for devices with and without the PPO layer, respectively. The lower 

energy loss implies that the energy storage efficiency is improved by the application of the 

blocking layer. It should be noted that the energy loss and leakage current in the devices 

presented in this work are higher than those values in a typical supercapacitor on the market. 

This is mainly due to contaminants (e.g. water) in the electrolyte of the devices fabricated in our 

lab. To avoid contamination, it is recommended to use electrolyte with high purity and do the 

fabrication and test in a glove box. Nevertheless, the studied approach in this work demonstrates 

the feasibility of reducing leakage current in any electrolytic double layer capacitor by 

application of a thin blocking layer. 

The energy storage density could be improved if a thinner blocking layer were used. Of 

course the leakage current would be higher with a thinner PPO layer. Further study is required to 

investigate the effect of the blocking layer thickness on the specific capacitance, energy density, 

and leakage current in a device. Due to the self-terminating effect in the electropolymerization of 

PPO, it is difficult to control the thickness of the deposited layer. A cyclic voltammetry with a 

fewer number of cycles may produce thinner films, but the layer would likely have defects. 

Other methods such as atomic layer deposition (ALD) has been planned to be employed for 

depositing an ultrathin film of an insulator (e.g. Al2O3 and Barium Strontium Titanate-BST). The 

thickness of the layer can be well controlled by using ALD. Also, different insulating materials 

can be tested. 
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4.5 Conclusions 

As a solution for reducing the leakage current in supercapacitors, application of an ultra-

thin blocking layer has been demonstrated. The experimental results from a 1.5 nm thick layer of 

PPO on activated carbon electrodes of a supercapacitor show that the leakage current was 

reduced by 78%. However, the specific capacitance and the energy storage density were 

decreased by 56%. Due to the lower leakage current, the amount of energy waste was 

significantly lower in the device with the blocking layer, compared to the device with no coating. 

In conclusion, deposition of the blocking layer can be used to make more efficient 

supercapacitors for the applications which need longer charge storage time. More study on the 

thickness and material of the blocking layer is required to optimize the performance of 

supercapacitors with the blocking layer.. In order to gain a better understanding of the effect of 

the blocking layer an analytical model has been developed and discussed in the next chapter. 
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CHAPTER 5: MODELING AND SIMULATION STUDY OF THE SELF-

DISCHARGE IN SUPERCAPACITORS IN PRESENCE OF A BLOCKING LAYER
2 

 

5.1 Introduction 

The depletion of fossil fuels based energies such as oil and natural gas, and the 

environmental problems linked to their CO2 emissions, have increased research interests towards 

renewable sources of energy. Since the captured form of renewable energies (e.g. wind or solar 

energy) is not readily available all the time, energy storage devices are required for the optimum 

usage of the energies. The available types of electrical energy storage devices include fuel cells, 

batteries, and supercapacitors [108]. Although batteries and fuel cells have relatively high energy 

densities compared to supercapacitors, their power density is lower [8], [9]. Additionally, 

supercapacitors have high life cycles (typical ∼1 million cycles) [109]. The combination of these 

features make supercapacitors potentially suitable for various applications such as power tools, 

elevator, energy management systems, electric vehicles [85], [110], wearable and flexible 

electronics [111], stand-alone severe weather condition systems [112], piezo-electric [113], and 

renewable energy generation [114], [115]. 

Most commercial types of supercapacitors are EDLCs (Electric Double Layer 

Capacitors), in which energy is stored by the formation of a double layer charge at the electrode–

electrolyte interface [41], [96]. In a simple form, the electronic charges on the electrode and the 

2
This chapter was previously published in [116]. Permission is included in Appendix A. 
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ionic charges at the electrode surface resemble a parallel plate capacitor. The space between the 

two layers of the charges is limited by the size of the solvent molecules surrounding the ions 

(Figure 20(a)). 

 

Figure 20  Schematics of the electrode–electrolyte double layer interface in supercapacitors. (a) 

Charge loss is induced by Faradaic (redox) reactions at the surface of the electrode. (b) Energy 

storage ability is improved by the application of a thin blocking layer which decreases the 

kinetics of the redox reactions. 

 

Despite the high power density, supercapacitors suffer from high leakage current [17] 

which limits their usage in some practical applications. Self discharge or leakage is the inability 

of supercapacitors to retain stored charge for a long period of time. Faradaic (redox) reactions at 

the electrode–electrolyte interface are the main reason for the leakage current in EDLCs [18] 

(see Figure 20(a)). 

We have demonstrated that the application of a thin layer of an insulating material 

(blocking layer) can reduce the leakage current in an EDLC (Figure 20 (b)) [52]. In the previous 
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work, we coated the surface of the carbon based electrodes with a thin layer (∼1.5 nm) of 

polyphenylene oxide (PPO). 

Considering that the leakage current is proportional to the kinetics of the redox reaction, 

the role of the blocking layer is to decrease the reaction rate by introducing an energy barrier for 

the electrons passing the electrode–electrolyte interface. In presence of the blocking layer, the 

electron transfer rate would be limited by the tunneling through the barrier. However, the 

blocking layer decreases the capacitance because of the increase of the distance between the 

positive and negative charges in the double layer region [52]. As shown in Figure 20(b), the 

blocking layer can be modeled as a capacitor (CBL) in series with the double layer capacitor 

(CDL). Since the decrease in the capacitance affects the energy density in the device, it is 

important to study the effect of the blocking layer thickness/material on the leakage effect and 

energy density of the device. 

In the current work, we have focused on the theoretical study of the blocking layer. Using 

the fundamental physical and electrochemical models for redox reactions at an electrode–

electrolyte interface, we have developed a model for investigating the blocking layer effect on 

the device characteristics. It was found that the developed model can explain the experimental 

results from our previous work) [52]. Based on the model a Matlab code has been developed 

(Appendix F) to simulate the effect of the barrier thickness and initial voltage on the open circuit 

voltage and the energy storage of a supercapacitor. 

5.2 Modeling 

Due the negative impact of the blocking layer on the specific capacitance, a very thin 

coating layer in the range of nanometer (nm) is recommended to reduce the leakage current. In 
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this situation, the electrons can still tunnel through the layer (quantum mechanical effect). 

However, the electron transfer rate reduces exponentially with the thickness of the layer [31]. 

The modeling study, presented in this work, is limited to investigating the leakage current in an 

EDLC under the open circuit conditions with the initial voltage of V0. It is assumed that prior to 

the open circuit test, the capacitor was charged for long enough time to form the double layer 

charge on the entire surface of the electrodes. Hence, the voltage drop in the open circuit would 

be only due to the electrochemical current, not the rearrangement of ions on the electrode surface 

[117]. In general, an electrochemical current can be limited by either the reaction rates at the 

electrode (kinetics) or mass transport (diffusion of ions from the bulk electrolyte to the electrode) 

[118]. Considering the open circuit conditions, in which there is no external power source during 

the self-discharge, we have assumed that the current is only kinetics limited. In such a situation, 

the leakage current is equal to the product of the surface charge and the reaction (electric charge 

passing the electrode–electrolyte interface per unit of time) rate. However, the rate is a function 

of the voltage across the double layer. Therefore, the leakage current and the reaction rate 

decrease as the voltage drops with time (self-discharge). 

According to Tafel equation, the electron transfer rate, k1, changes exponentially with the 

over potential (η) [31] and [119]: 

 

                                                                                                                             (23) 

 

where ko is the rate constant at zero overpotential, α is the charge transfer coefficient (0<α < 1, 

the portion of the overpotential that shifts the standard free energy of activation level, it also 

measures the symmetry of the energy barrier [31]), F is the Faraday constant 
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(∼96500 C mol
−1

), R (8.314 J K
−1

 mol
−1

) is the gas constant, and T is the absolute temperature in 

Kelvin. 

The overpotential η is the difference between the voltage V across the double layer and 

the redox potential E0 of the reaction [120]. As a function of the voltage, Equation (23) then 

becomes: 

                                                                                                                    (24) 

 

In the presence of a blocking layer, the overall rate, k, is limited by the tunneling rate 

through the blocking layer. Therefore, k decays exponentially with the thickness of the 

layer [31]. 

 

                                                                                                                                 (25) 

 

In Equation (25) d is the thickness of the blocking layer and β is an exponential 

coefficient related to the energy barrier of the blocking layer. 

From Equations (24) and (25), the electron transfer rate at the surface of an electrode with 

the blocking layer can be expressed as a function of the voltage and the thickness by: 

 

                                                                                                    (26) 

 

It can be easily noted that for d = 0, k(V,0) = k1. Also it should be noted that 

Equation (26) is applicable only for devices with a thin blocking layer where the electron can 

tunnel through (d in the range of a few nanometers). A relatively thick dielectric layer reduces 
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the overall capacitance to Ctot ≈ CBL. In this situation the device is more like a parallel plate 

capacitor in which the leakage occurs through the defects in the dielectric layer. 

Assuming that the leakage current, i, (i.e. Faradic current) is kinetics limited, the current 

at any time (t) can be expressed by Ref.  [31]: 

 

                                                                                                                                     (27) 

 

where A is the electrode surface area (cm
2
), n is the number of electrons exchanged in the redox 

reaction, and σ(t) is the ions concentration at the surface (mol cm
−2

) which is a function of the 

time (during the discharge cycle). It can be noted that the leakage current is proportional to the 

surface area of the electrode. However, since the double capacitance is directly related to the 

electrodes surface area, reducing the surface area to decrease the leakage would be detrimental to 

the storage capability of the device. 

The self-discharge current is also given by: 

 

                                                                                                                                   (28) 

 

where C is the capacitance, V is the voltage across the electrode–electrolyte interface, and t is 

time. The negative sign is because of the direction of the charge (across the interface) versus the 

potential of the electrode. 

From Equations (27) and (28) we have: 

 

                                                                                                                      (29) 
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In Equation (29), nFAσ(t) is equal to the total charge in the double layer Qs(t) which can 

be obtained from Qs(t) = CV. Hence, Equation (29) can be rewritten as the following: 

 

                                                                                                                       (30) 

 

Therefore the variation of the voltage with time during the self-discharge process can be 

obtained from the following differential equation: 

 

                                                                                                                                  (31) 

 

It is important to notice that Equation (31) suggests that the discharge profile in an EDLC 

(with or without the blocking layer) is not a function of the capacitance or the electrode surface 

area. This can be simply explained as both the capacitance and leakage current are proportional 

to the surface area. So a larger capacitance with larger electrode areas would have a larger 

leakage current as well, but the discharge profile would be the same regardless of the electrode 

area or the capacitance value. Finally substituting (23) into (28), the self-discharge voltage is 

given by: 

 

                                                                                           (32) 

 

Considering m = ko.exp(−αFE0/RT) as a constant (E0 is a constant), Equation (32) can be 

simplified to: 
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                                                                                                     (33) 

 

The analytical solution of differential Equation (33) involves the use of an inverse 

function of the exponential integral [121], which cannot be solved easily using analytical 

methods. Furthermore, solving (33) requires the knowledge of the electrochemical parameters 

such as m, α, and β. However, the equation can be solved numerically for given conditions. In 

this approach, the electrochemical parameters can be extracted from experimental results. 

5.3 Results and Discussion 

5.3.1 Parameter Extraction and Estimation of k(V, d) from Experimental Results 

All the numerical studies and simulations were conducted using Matlab. To obtain the 

self discharge profile in a device with the blocking layer thickness of d (arbitrary) two sets of 

experimental data were used. The first data was from the self-discharge profile of a carbon 

electrode without any blocking layer and the second data was from the same electrode with 

1.5 nm thick layer of PPO as the blocking layer [52]. The experimental conditions such as 

charging voltage, charging and discharging times, operating temperature of the two experiments 

were the same. 

Equation (24) suggests that the reaction rate is increasing exponentially with the voltage. 

The values of k(V,d) have been extracted from the experimental results using the differential 

equation (31) in this form: 

 

                                                                                                                              (34) 

 

 

Figure 21 shows k as a function of voltage for both devices without and with the blocking 

layer. A linear regression analysis was used to fit exponential functions to the experimental data 
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[122]. The regression coefficients for Figure 21(a) and b are respectively 0.990 and 0.992. In the 

absence of the blocking layer, Equation (26) suggests that k(V,0) = m.exp(αFV/RT). Therefore 

from the fitted curve in Figure 21(a), we can find that m = 1.31 × 10
−7

 s
−1

 and α = 0.12. These 

values are considered constants for both devices with and without the blocking layer. 

Since α must be between 0 and 1, the obtained value of α is reasonable [123]. 

 

Figure 21  Reaction rates versus voltage in devices (a) without and (b) with the blocking layer. 

The data points are extracted from the experimental results. The solid curves show the fitting 

curves. The suggested exponential functions for the fitted curves and the regression coefficient 

for each fit are shown in the plots. 

 

Using Equation (25), β is extracted from k(V,0) and k(V,1.5 nm) in Figure 21. It should be 

noted that β is a function of the voltage as the energy barrier height changes with the voltage 

across the blocking layer barrier [31]. As explained in detail in the Supplementary Material (see 

Appendix C), the variation of β with voltage can be approximated with a linear function with 

β = 0.7473 nm
−1

 at V = 2 V. Such a value is in the range of the previously reported electron 

tunneling coefficient in similar structures (a thin film of an insulator on a conductive electrode) 

[124], [125] and [126]. 

The estimated values for m, α, and β were used in Equation (33) to simulate the discharge 

profile V(t) in hypothetical devices with various thicknesses in the blocking layer (different 
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values of d). For numerical solution of the differential equation, a variable order Adams–

Bashforth–Moulton method (linear multistep method) was used [127], [128] and [129] and the 

initial condition V0 (V at t = 0) was considered. 

5.3.2 Simulation Results for PPO as the Blocking Layer 

Estimating the value of k(V,d), Equation (33) was used to calculate the voltage values in a 

device with and without the blocking layer (1.5 nm of PPO) for 0 ≤ t ≤ 3600 s. As shown in 

Figure 22, the simulation results are in good agreement with the experimental results reported 

previously [52]. It should be noticed that the simulation results in Figure 22 are not obtained 

from any direct curve fitting to the experimental data. As mentioned above, it was assumed that 

the reaction rate is an exponential function of voltage (Equation (26) and the value of k was 

estimated from the experimental results. Therefore, simulation and experimental results 

in Figure 22 support the use of Equation (33) to study the discharge profile. 

 

Figure 22  Simulated and experimental self-discharge profiles with 1.5 nm thick PPO as the 

blocking layer. 
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5.3.3 Simulation Results for Devices with Various Thickness of the PPO Layer 

Using the developed Matlab code (Appendix F) to solve Equation (33), we studied the 

effect of the blocking layer thickness on the device characteristics. Two different scenarios were 

considered: a) Constant initial voltage (V0 = 2.0 V), and b) Constant initial energy density. 

5.3.3.1 Constant Initial Voltage 

To better understand the effect of the thickness of the blocking layer on the leakage, the 

self discharge voltage profiles for different thicknesses (0.0 nm, 0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm, 

2.5 nm, and 3.0 nm) were simulated. The rate constants as a function of the voltage (0–2 V) were 

calculated for each thickness with the exponential coefficient β obtained from the experimental 

data. The differential Equation (33) was solved for each thickness and the simulated voltage 

profiles in Figure 23 were obtained. 

 

Figure 23  Simulated self-discharge profiles with PPO as the blocking layer for different 

thicknesses. 

 

As expected, the application of a thicker blocking layer reduced more the leakage current 

(Figure 23). However, due to the specific capacitance reduction, the profile of the energy density 

loss was different for different devices. Considering the estimated surface area of the electrode, 

the thickness and permittivity of PPO, the value of CBL was calculated using the parallel plate 



www.manaraa.com

 

59 

 

capacitance equation [52]. Then the overall capacitance, C, (CDLin series with CBL-

see Figure 20(b)) was calculated for different thickness in the blocking layer. Using the energy 

equation in a capacitor (E = 0.5 CV
2
) the change in the stored energy versus time was estimated 

for different devices. Figure 24 shows the specific energy (energy divided by the mass of the 

electrodes) versus voltage and the energy versus time for different blocking layer thicknesses. As 

shown, the energy loss was less in devices with the thicker blocking layer. For the device with no 

blocking layer, the estimated energy loss in 1 h was 15.27 J g
−1

whereas in the device with 1.5 nm 

of the blocking layer, it was only 4.86 J g
−1

 (see Table 4). Those estimated values were in 

agreement with the experimental values reported in Ref. [52] (16.22 J g
−1

 and 5.5 Jg
−1

). The 

estimated energy loss in the device with 3.0 nm of the blocking layer was the smallest (∼2.02 

Jg
−1

), however due to the effect of the blocking layer thickness on the capacitance, the initial 

energy density for V0 = 2.0 V was also the lowest. Nevertheless, the energy loss in the device 

with no blocking layer was the highest with more than half of the initial energy loss in an hour. 

The specific capacitance, the specific energy at t = 0 s and 3600 s (initial specific energy and 

after 1 h of self-discharge), and the amount of energy loss in 1 h were calculated and listed 

in Table 4. 

 

Figure 24  Simulated specific energy profiles with PPO as the blocking layer for different 

thicknesses. Specific energy versus (a) voltage and (b) time. 
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Table 4  Simulated characteristics of the supercapacitors for different thicknesses of the blocking 

layer (PPO) with the same initial voltage. 

Blocking layer thickness [nm] 0 0.5 1 1.5 2 2.5 3 

Specific capacitance [F g
−1

] 12.99 9.11 7.01 5.7 4.8 4.15 3.65 

Voltage (at t = 0 s) [V] 2 2 2 2 2 2 2 

Voltage (at t = 3600 s) [V] 1.21 1.3 1.38 1.46 1.53 1.59 1.65 

Specific energy (at t = 0 s) [J g
−1

] 24.92 17.47 13.45 10.93 9.21 7.96 7 

Specific energy (at t = 3600 s) [J g
−1

] 9.64 7.75 6.73 6.08 5.62 5.27 4.98 

Specific energy loss in 1 h [J g
−1

]. 15.28 9.72 6.72 4.86 3.59 2.69 2.02 
 

5.3.3.2 Constant Initial Energy Density 

Although the application of a blocking layer reduces the specific capacitance, the device 

voltage range can be expanded due to the voltage drop across the blocking layer. Since the 

energy of a supercapacitor is a function of the capacitance and the voltage, the question is if the 

voltage expansion can compensate the capacitance reduction to make a low leakage device with 

the same energy density? We have used the developed Matlab code (Appendix F) to study the 

self-discharge profile and the change in the energy density of the simulated devices with various 

thickness of the blocking layer. It was assumed that each device was charged to an initial voltage 

to store a specific amount of energy (specific energy of a device without any blocking layer with 

the initial voltage of 2 V = 24.92 J g
−1

was selected). Figure 25 shows the voltage drop and the 

change in the specific energy with time for devices with the same initial specific energy storage. 

The summary of the important parameters is also listed in Table 5. 

Table 5  Simulated characteristics of the supercapacitors for different thicknesses of the blocking 

layer (PPO) at different charging voltages and same initial specific energy. 

Blocking layer thickness [nm] 0 0.5 1 1.5 2 2.5 3 

Voltage (at t = 0 s) [V] 2 2.34 2.67 2.96 3.22 3.47 3.69 

Voltage (at t = 3600 s) [V] 1.21 1.3 1.39 1.46 1.54 1.61 1.67 

Specific energy (at t = 0 s) [J g
−1

] 24.92 24.92 24.92 24.92 24.92 24.92 24.92 

Specific energy (at t = 3600 s) [J 
−1

] 9.6 7.77 6.77 6.13 5.69 5.36 5.11 

Specific energy loss in 1 h [J g
−1

]. 15.31 17.14 18.15 18.78 19.22 19.55 19.81 
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Figure 25 (a) Self discharge voltage and (b) specific energy profiles in devices with various 

thickness of the blocking layer. The initial energy density was the same in all the devices. The 

inset figures show the detail of the plots from t = 0 s to t = 100 s.  
 

Although the self discharge voltage profile was improved for higher thicknesses 

compared to 0.0 nm, the energy loss in the device with no blocking layer was the lowest. This 

was due to the sharp voltage drop observed for charging voltages above the initial charging 

voltage of 2.0 V (see Figure 25). 

It should be noticed that in presence of the blocking layer the device voltage can be 

extended to a limited value. The upper limit in the voltage would be determined by the 

breakdown effect from the voltage across the blocking layer. Considering the dielectric strength 

of 1.7 MV cm
−1

 [101] for a PPO layer, the largest potential across a 3 nm thick film is only 

0.51 V. This implies that the device voltage can be expanded only by 1.02 V (2 × 0.51 V for the 

voltage drop on the blocking layers on both electrodes). 

Although the presented work was limited to study devices with PPO blocking layer at 

different thicknesses, the analytical and computational methods can be applied to study other 

dielectric materials. A larger specific capacitance can be achieved if a material with higher 

permittivity (e.g. Al2O3) was used instead of PPO. Also, the energy density can be improved if 

the breakdown strength in the new dielectric layer is larger than that in PPO.  
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5.4 Conclusion 

In this work, we have demonstrated an analytical model to explain the self discharge 

profile of a supercapacitor for different thicknesses of the blocking layer. This was achieved by 

considering the rate constant of the faradic reactions responsible for the leakage and the 

tunneling of the electrons through the blocking layer. The simulated self discharge profiles are 

compatible with the experimental results reported in the previous work. In this study the effect of 

the charging voltage on the self discharge and the impact of the thickness on the capacitance 

reduction and the energy losses were also evaluated for a specific type of blocking layer. The 

model developed in this work could be utilized as a tool to predict the electrochemical behaviors 

(capacitance, leakage current, self discharge voltage, and specific energy) of a double layer 

capacitor in the presence of a blocking layer for any given thickness. This could contribute in the 

choice of the optimum blocking layer material and thickness to reduce the leakage for specific 

applications. The optimized thickness of the blocking layer could be predicted based on the 

specific application and the values obtained from the simulation results compared to defined 

figure of merits of the supercapacitor relative to the application. One needs to define the 

limitations in the application (e.g. energy loss or voltage drop in 1 h or more) to use the 

developed simulation tool for estimating the best thickness of the blocking layer and study the  

effect of that on the energy density and the discharge profile. The next chapter explores the 

enhancement of PEDOT: PSS double layer capacitance by altering its structure with the 

optimum amount of a surfactant. 
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CHAPTER 6: EFFECT OF TRITON X-100 ON THE DOUBLE LAYER 

CAPACITANCE AND CONDUCTIVITY OF POLY(3,4-

ETHYLENEDIOXYTHIOPHENE):POLY(STYRENESULFONATE) (PEDOT:PSS) 

FILMS
3
 

 

6.1 Introduction 

 As an alternative to batteries, supercapacitors have attracted a lot of interests in 

applications where fast charging and long life cycle capabilities are needed [71], [130], and 

[131]. Supercapacitors are electrochemical devices with two separated electrodes in an 

electrolyte. The main mechanism of energy storage in supercapacitors is based on the formation 

of double layer capacitance at the electrode–electrolyte interface [96]. In addition to the double 

layer formation, energy storage can be achieved by redox reactions at the surface of the 

electrodes in a pseudo supercapacitor [43], [132]. In spite of high power density, the application 

of supercapacitors, as primary energy storage devices, is limited mainly due to their low energy 

density which is at least one order of magnitude lower than batteries [10]. To increase the energy 

density, highly porous electrodes with high specific capacitance are required [20]. Different 

structures and electrode materials have been investigated to increase the specific capacitance 

[20]. Among different materials, the application of conducting polymers is generally attractive 

because of low-cost material and simple fabrication processing [20], [133]. A thin film of a 

3
This chapter was previously published in [74]. Permission is included in Appendix A 
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conducting polymer can be deposited on an electrode using simple techniques such as spin 

coating or inkjet printing [134], [135], [136] and [137].  

Despite their ability to be easily processed and fabricated at large scales, when used as 

primary or sole electrode material, conducting polymers have low double layer specific 

capacitance due to the compact structure of the polymer film [133]. Previous studies have shown 

that the combination of a conducting polymer with other materials (e.g. carbon nanotubes and 

graphene) can significantly enhance conductivity and the specific capacitance of the composite 

polymers [133], [19], [138], [21] and [22]. However, the high cost and complexity of 

synthesizing composite materials are drawbacks for the large scale production of the devices. 

Among conducting polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) is a promising material for supercapacitors due to stability, conductivity, and 

aqueous solution processability of the polymer [135], [136], [139] and [140] . PEDOT:PSS is 

widely used in many organic electronic devices including, solar cells, light emitting diodes [141], 

[142], [23], [24] and [143], Schottky diodes [25], and supercapacitors [144], [145]. PEDOT:PSS 

is obtained by the polymerization of EDOT monomers in the presence of PSS anions which 

serve as oxidative agents [140]. Although PEDOT alone is unstable and insoluble in most 

solvents [146], PEDOT:PSS is well stable and can be dissolved in water [147] and [148]. To 

further enhance the stability and conductivity, PEDOT:PSS can be treated with ethylene glycol 

(EG). The addition of EG increases phase separation between PSS chains and PEDOT 

oligomers, which provides better conductivity through the charge transporting species (PEDOT) 

of the conducting polymer [149] and [150]. Similar stability and conductivity enhancement has 

been observed when dimethyl sulfoxide (DMSO) was used instead of EG [137] and [151]. 



www.manaraa.com

 

65 

 

The non-ionic surfactant polymer of polyethylene glycol and p-t-octylophenol (Triton X-

100) has also been utilized to increase PEDOT:PSS films conductivity by stabilizing PEDOT 

nanosized particles [152] and to enhance the stability by decreasing surface tension [153]. 

Furthermore, Fic et al. have shown that the application of Triton X-100 in the electrolyte of a 

supercapacitor can enhance the specific capacitance by increasing the wettability of the electrode 

[153]. The decrease in the surface tension is achieved due to the molecular structure of Triton X-

100, which has amphiphilic properties (hydrophilic ‘head’ and hydrophobic ‘tail’) [153]. 

Moreover, it is found that the electrical and optical properties of a PEDOT:PSS film improve by 

mixing a small percentage of a surfactant to the PEDOT:PSS solution before depositing the 

polymer film [152]. In this case, Triton X-100 can change the structure of the polymer film to 

increase the porosity of PEDOT:PSS films [154]. Also, it was shown that the addition of a small 

amount of Triton X-100 (0.3 wt%) to PEDOT:PSS increases the capacitance of an all-printed 

supercapacitor [136]. However the correlation between the concentration of Triton X-100 and 

the specific capacitance of the conducting polymer has not been studied. In this paper we present 

the effects of different concentrations of Triton X-100 on the double layer capacitance of 

PEDOT:PSS supercapacitors. We have found that the specific capacitance of the polymer film 

can be increased by a factor of 10 when mixing 3.0 wt% of Triton X-100 with the PEDOT:PSS 

solution before depositing the polymer. Higher concentration of the surfactant resulted in lower 

specific capacitance, likely due to change in the structural integrity of the polymer film. 

To understand the electrical behavior of a supercapacitor, the simple Randles model 

including a capacitor (C) with a parallel resistor (and RP) and an equivalent series resistor (Rs) 

can be used for large signal applications [155]. However, for small signal analysis, the ideal 

capacitance can be replaced by a Constant Phase Element (CPE) which takes into consideration 
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the surface morphology and uniformity of the charge distribution on the electrode [156], [157], 

[158] and [159]. 

6.2 Experimental 

A Princeton Applied Research Potentiostat-VersaSTAT4 was used to perform all 

electrochemical experiments. The conductivity tests were conducted with a four point-probe 

setup using a Keithley source meter unit (model 2602). All chemicals were purchased from 

Sigma–Aldrich and used without additional purification. All weight measurements were 

recorded using an analytical balance (model GH-252) with a precision of 0.001 mg. 

6.2.1 Electrode Fabrication 

Separate PEDOT:PSS composite solutions were prepared by mixing pristine 

PEDOT:PSS with 5 wt% of EG and different percentages of Triton-X 100 (0.0, 0.3, 0.5, 1.5, 2.0, 

2.5, 3.0, 3.3, 4.0, 5.0 wt%). Before using, the pristine PEDOT:PSS solutions were filtered 

through polytetrafluoroethylene (PTFE) membrane syringe filters with 0.22 μm pore size. The 

mixed samples were then sonicated for 40 min to dissolve any particle and to achieve 

homogeneous solutions. 

Indium tin oxide (ITO) coated on polyethylene terephthalate (PET) with a surface 

resistivity of 60 Ω/□ (Sigma) was used as the substrate and the back contact for the polymer film. 

The electrodes were fabricated by spin coating 2 mL of each polymer mixture on the ITO 

substrate (2 cm × 1 cm) for 30 s at 1000 rpm. After the coating, the samples were cured on a hot 

plate for 15 min at 120 °C. To enhance the conductivity, the cured films were further post-treated 

by putting the surface of the spin-coated films in contact with an EG bath for 5 min followed by 

another hot plate annealing at 120 °C for 40 min [160]. Figure 26 shows a fabricated electrode. 

The mass of composite PEDOT:PSS films were measured before and after each stage of 

http://www.sciencedirect.com/science/article/pii/S0379677914000423#fig0005
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electrode and cell fabrication in order to accurately determine the mass of treated/composite 

PEDOT:PSS on the 2 cm × 1 cm ITO substrates. 

 

Figure 26   Treated PEDOT–PSS film on ITO substrate. 

 

It was noted that samples with low levels of Triton X-100 (i.e. 0.3 wt%, 0.5 wt%) yielded 

non-uniform coatings. Also, it was observed that the solution of PEDOT:PSS with 5.0 wt% of 

the surfactant was viscous (gel form) which resulted in an adhesive film when it was spin coated 

on the substrate. 

6.2.2 Cell Fabrication and Characterization 

Experimental cells were fabricated for each sample from the above electrodes by 

inserting exactly 1.0 cm of the electrode into the electrolyte of the cell (electrode apparent 

surface area of 1 cm × 1 cm). The layers of the PEDOT:PSS composite at the upper part of the 

substrates were removed using isopropanol, to expose the ITO active layer which served as the 

current collector in the fabricated cells. A solution of 1 M tetrabutylammonium 

hexafluorophosphate (TBAP) solvated in propylene carbonate (PC) was used as the electrolyte 

for all tests. The three-electrode cell configuration with a coiled Pt wire as the counter electrode, 

Ag/AgCl as the reference electrode, and the treated PEDOT:PSS on ITO as the working 

electrode was used for all experiments except for the stability test which was performed under a 
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two-electrode configuration. All the samples were tested under the same experimental conditions 

at room temperature. 

To study the performance of the PEDOT:PSS films with various Triton X-100 

percentages, electrochemical tests including Cyclic Voltammetry (CV), Galvanostatic, and 

Electrochemical Impedance Spectroscopy (EIS) measurements were conducted. The specific 

capacitance of each electrode was measured by the CV method, in which the working electrode 

potential was swept with a scan rate of 25 mV/s between −500 mV and +500 mV versus 

Ag/AgCl for 5 cycles. The series resistances of the films and the effect of charging and 

discharging on the electrodes’ performances, as the percentage of Triton X-100 varies, were 

analyzed using fast galvanic pulses of ±1.0 μA. To determine the effects of Triton X-100 on the 

impedance of the treated PEDOT:PSS films, EIS tests were also performed for a frequency range 

of 10 mHz to 100 kHz. The stability test was carried out by doing 3000 cycle of CV test (two-

electrode) in the voltage range of −1.0 V to +1.0 V (50 mV/s) across a cell with two similar 

electrodes soaked in the TBAP electrolyte. 

The conductivity of the PEDOT:PSS films was measured using a four point-probe setup 

(Keithley 2602). The treated PEDOT:PSS samples were spin-coated under the same 

experimental conditions as described in Section 2.1, on the non-conductive side of the substrates. 

The thicknesses of the films were estimated based on the recorded mass of treated PEDOT:PSS 

on the substrates, the surface area of the substrates, and the density of the dried coating of 

PEDOT:PSS (1.011 g/cm3) from the product information (Sigma). The structure and 

morphology of selected PEDOT:PSS treated films with Triton X-100 (0.0, 3.0, and 5.0 wt%) 

were studied using SEM (HITACHI S-800). 

 

http://www.sciencedirect.com/science/article/pii/S0379677914000423#sec0015
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6.3 Results and Discussion 

6.3.1 Specific Capacitance Measurements Using Cyclic Voltammetry 

Figure 27 shows the CV curves of selected treated PEDOT:PSS films with 0.0, 0.3, 3.0, 

and 5.0 wt% of Triton X-100. The CVs were performed at a scan rate of 25 mV/s in the voltage 

range of ±0.5 V versus reference electrode (Ag/AgCl). The current was normalized to the weight 

of treated PEDOT:PSS films on the 1 cm × 1 cm portion of the ITO substrates which was 

immersed into the electrolyte. The rectangular shape of the voltammograms indicated that the 

capacitances recorded arise from double layer effect (no pseudo capacitance) [161]. It can be 

noted that the presence of Triton X-100 has a significant effect on the specific capacitance of the 

treated PEDOT:PSS films. The specific capacitance, Csp, can be estimated from the difference 

of specific currents, ΔIsp, at zero voltage and the scan rate ν(Csp = 0.5 × ΔIsp/ν). A conducting 

polymer film with no surfactant (0.0 wt%) showed ∼2.0 F/g capacitance which is consistence 

with previously reported values [162]. The specific capacitance was almost the same (~1.7 F/g) 

with low concentration of Triton X (0.3 wt%). However, the specific capacitance was increased 

to almost 10 times higher (20 F/g) for 3.0 wt% of Triton X-100. Using 5.0 wt% of the surfactant.  

 

Figure 27  Cyclic voltammetry curves for different values of Triton X-100 percentage. 

The capacitance was reduced to the same level as the polymer without the surfactant (~2.5 F/g). 

http://www.sciencedirect.com/science/article/pii/S0379677914000423#fig0010
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The specific capacitance of all samples was measured separately. As shown in Figure 28, the 

peak specific capacitance was achieved in the sample with 3.0 wt% concentration of Triton X-

100. The increase in the capacitance from 0.0 to 3.0% of the surfactant is likely due to the 

increase in the porosity of the PEDOT:PSS films with the addition of the Triton X-100 [154]. 

Also, a part of the capacitance change can be because of the reduction in the surface tension of 

the electrode [153]. As shown in Figure 28, the increase in the surfactant concentration, beyond 

3.0 wt%, resulted in a decrease of the specific capacitance. It was observed that the PEDOT:PSS 

solution became very viscous (gel form) when the Triton X-100 concentration was higher than 

3.0 wt%. As the result, the quality of spin coated films was lower with some defects. 

 

Figure 28  Specific capacitance as a function of Triton X-100 percentage. 

 

6.3.2 Fast Galvanic Pulse Measurements 

In order to study the effect of Triton X-100 on the series resistance, galvanic pulse 

measurements were performed by applying ±1 μA current pulses to the cells (3-probe 

configuration) for 40 s (20 s to charge and 20 s to discharge). Figure 29 shows the voltage 

change in the electrode with 3.0 wt% surfactant. The linear potential variation during charge and 

discharge of the capacitor implies that the effect of Rp is negligible for this voltage range [163]. 

Also the slope of the potential represents the capacitance of the electrode. As expected, the 

http://www.sciencedirect.com/science/article/pii/S0379677914000423#fig0015
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specific capacitances measured with this method were the same as the values reported from the 

CV measurement (Figure 28). 

 

Figure 29  Galvanic pulses for PEDOT–PSS electrodes with 3.0 wt% Triton X-100. Current 

pulses of ±1 μA with 40 s period were applied to charge and discharge the supercapacitors. 

(Inset) The voltage drops at the transition from charging to discharging. 

 

As shown in the inset plot (Figure 29), the transition from +1 μA to −1 μA resulted in a 

voltage drop, ΔV, due to the series resistance, Rs. The value of the resistance can be estimated 

from Rs = ΔV/2 μA. The series resistance has been measured in all the electrodes with different 

concentrations of the surfactant. The results of the measurements are shown in Figure 30. 

Although the values of the series resistance of the cells were not significantly affected by the 

concentration level of Triton X-100, the series resistance was at the lowest value for the samples 

with ∼3.0 wt% in the surfactant concentration. The variation in the series resistance can be due 

to the difference in the surface area and thickness of the films [140]. Also, the conductivity of the 

polymer can be affected by the presence of the surfactant. 
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Figure 30  Series resistances for different values of Triton-X 100 percentage. 

 

In order to study the effect of Triton X-100 on the conductivity of the polymer films, the 

polymer solutions with various concentrations of the surfactant was spin coated on the 

nonconductive side of the substrates. The lateral conductivity of the samples was measured using 

the 4-probe technique. The results are shown in Figure 31. The conductivities recorded ranged 

between 0.7 S/cm and 33 S/cm. The films with no surfactant presented the lowest conductivity of 

0.7 S/cm. The addition of surfactant increased the conductivity of the film by at least 20 times. 

Although a local peak was observed at 3.0 wt%, the variation in the conductivity does not show 

any correlation with the concentration of Triton X-100. 

 

Figure 31  Film conductivity as a function of Triton-X 100 percentage. 
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The trend of the resistance change in Figure 30 and the conductivity of the samples 

in Figure 31 reveal that in addition to the polymer conductivity, the surfactant concentration 

affects the contact resistance between the polymer film and the back contact ITO. This was also 

observed particularly for the sample with 0.3 wt%, which had a low quality film (nonuniform 

film with defects) when spin coated on ITO. 

6.3.3 Electrochemical Impedance Spectroscopy 

The results from CV and galvanic pulse measurements show the large signal behavior of 

the polymer film. In order to understand the effect of the surfactant on the small signal response 

of the PEDOT:PSS films, electrochemical impedance spectroscopy tests were performed with no 

DC voltage bias and a sinusoidal signal of 20 mV, in the frequency range of 10 mHz to 100 kHz. 

The Nyquist plots for different levels of Triton X-100 are shown in Figure 32. The plots show 

that the parallel resistance (RP) of the electrode was higher for 3.0 wt% and 5.0 wt% of Triton 

X-100. The slopes of the Nyquist plots for low frequencies, when the charging is diffusion 

limited, were smaller for low concentrations of Triton X-100. 

 

Figure 32  Nyquist plots of electrodes made with PEDOT:PSS with different percentages of 

Triton X-100. (Inset) Nyquist plot at high frequencies. 
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The Bode plot of the measured impedance for the electrode of 3.0 wt% surfactant is 

shown in Figure 33. The plots show both the magnitude and phase of the impedance for a 

frequency range from 10 mHz to 100 kHz. To explain the behavior of an electrode in different 

frequencies a more complicated model than the Randles model is required. Due to the porous 

structure of the electrode, instead of the double layer capacitor, a distributed capacitance–

resistance model (transmission line model) can be applied which is usually presented with a 

constant phase element (CPE) instead of the capacitor [136]. The small signal model of the 

electrode with CPE is shown in Figure 33 (inset). Using ZSimpWin software from Princeton 

Applied Research, the model was applied to find the best fit to the experimental results. Table 

6 shows the estimated parameters for the electrodes with 0.0, 3.0, and 5.0 wt% of Triton X-100. 

Also the measured masses for the samples have been listed in the table. 

 

 

Figure 33  (a) Magnitude and (b) phase of impedance from the electrode made of PEDOT:PSS 

containing 3.0 wt% of Triton X-100. Both experimental and simulation results are shown. The 

simulation results were obtained using the inset models. 
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Table 6  Simulated values for CPE, RP, and Rs in the of 0.0, 3.0, and 5.0 wt% Triton-X 100 

electrode. 

Characteristics Value (0 wt%) Value (3.0 wt%) Value (5.0 wt%) 

Rs [Ω] 150.8 210.3 219 

Q [S sec
n
] 4.492 × 10

−5
 3.250 × 10−4 4.591 × 10

−4
 

Frequency power, n [0 < n < 1] 0.7214 0.8508 0.9197 

Rp [Ω] 2.70 × 10
5
 3.69 × 10

6
 3.41 × 10

8
 

Polymer mass [mg] 7.5 × 10
−2

 2.5 × 10
−2

 2.7 × 10
−2

 

 

CPE is a complex impedance with the frequency power of n. The CPE impedance in 

angular frequency of ω is specified with Q and n: ZCPE = Q
−1

(jω)
−n

 where j = √−1 [155]. The 

value of n depends on the nature of the electrode and varies from 0 to 1. A CPE with n = 1 is 

practically a double layer capacitor.  Lower values of n indicate the porosity, surface roughness, 

and inhomogeneity of the charge distribution in the electrode [136]. The high value of n for the 

electrode containing 5.0 wt% of Triton X-100 implies low porosity of the electrode and 

relatively uniform charge distribution. This is consistent with the observation from the gel form 

of the solution with 5.0 wt% surfactant. In contrast, the electrode with no surfactant 

demonstrated the lowest value of n, which could be due to more distributed pores in the polymer 

film. However, the lower value of Q and larger mass in the sample with no surfactant suggests 

smaller pore (lower surface area) in the film with 0% surfactant. Additionally, the low specific 

capacitance in the absence of Triton X-100 measured by CV (Figure 27 and Figure 28) indicates 

low surface area (small pores). Although the pores may not be well distributed in the volume of 

the polymer with 3.0 wt% of Triton X-100, the larger specific capacitance implies the existence 

of larger pores with large overall surface area. The structure of the films was further studied with 

SEM. The results in Figure 35 confirm the structural differences. 
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6.3.4 Stability Study 

To study the stability of the electrode, a symmetrical supercapacitor was fabricated by 

inserting two ITO electrodes coated with PEDOT:PSS (3.0 wt% Triton-X 100) in a beaker 

containing the electrolyte (1 M TBAP in propylene carbonate). The device was tested by 

charging and discharging the cell for 3000 cycles from −1.0 V to +1.0 V (50 mV/s). The CV 

results for the device before and after 3000 cycles are shown in Figure 34. The capacitance 

dropped from 0.486 mF to 0.431 mF which could be partly due to the solvent evaporation from 

the beaker and partly from polymer film detachment (defect). For device applications, it is 

recommended to seal the cell in vacuum [159]. Also, air and water molecules in air can be 

removed by vacuuming which enhances the stability of the device and expands the voltage range 

to much higher values (3.0 V) [159]. Using an unsealed setup, we observed exponential changes 

in the current when the scan window was expanded beyond 1.0 V (the result is not presented 

here). Hence, the stability test was performed in the limited voltage range to avoid damaging the 

polymer film. Nevertheless, the result in Figure 34 shows that the stability of the polymer film 

with the surfactant is reasonable. 

 

Figure 34  Cyclic voltammetry curves before and after 3000 cycles of charging and discharging a 

symmetrical cell with polymer electrodes containing 3.0 wt% Triton X-100. 
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6.3.5 Surface Morphology 

Figure 35 shows the surface morphology of different electrodes. The images were taken 

with a HITACHI S-800 SEM machine. The film with no Triton X-100 showed no significant 

feature with a compact structure, which implies nanoscale pores. The treated PEDOT:PSS film 

with 3.0 wt% of Triton X-100 presented more porosity compared to the other electrodes. 

The film obtained with 3.0 wt% showed opening gaps in its structure. The gaps indicated 

a lamellar structure with 2 μm wide alternating bands. The structure of the 3.0 wt% film is in 

agreement with the impedance spectroscopy measurements. The 5.0 wt% film showed less 

porosity, than the 3.0 wt%, with individual randomly distributed pores in the micrometer scale. 

The SEM images showed that the addition of the surfactant changed the morphology of the 

surface of the PEDOT:PSS films by augmentation of porosity. 

6.4 Conclusion 

In this chapter, we presented the influence of Triton X-100 on the double layer 

capacitance of a PEDOT:PSS based electrode. A peak specific capacitance of ∼20 F/g was 

achieved when 3.0 wt% of the surfactant was mixed with the polymer solution. The series 

resistances of the samples and the films’ conductivities were measured which showed that the 

addition of Triton X-100 to PEDOT:PSS increased the film conductivity, but the level of the 

non-anionic surfactant did not affect significantly the conductivity of PEDOT:PSS films. The 

surface morphology and EIS study revealed that the surfactant has produced larger pores in the 

polymer film. The porosity structure was changed by the formation of gaps on the surface of the 

film with 3.0 wt% of the surfactant. Overall, the addition of the optimum concentration of Triton 

X-100 can increase the large signal double layer capacitance of PEDOT:PSS, allowing the 

conductive polymer to be utilized in electrochemical capacitor applications where double layer 
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capacitance is preferred to pseudocapacitive effect. The next chapter presents the final research 

project in which PEDOT:PSS modified with 3 wt% of Triton X-100 is used in addition to dyes to 

develop a photoactive supercapacitor. 

 

 

Figure 35  SEM images of PEDOT-PSS on ITO electrodes with (a) and (b) 0.0 wt%; (c) and (d) 

3.0 wt%; and (e) and (f) 5.0 wt% Triton X-100. All samples were also treated with 5 wt% 

ethylene glycol. 
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CHAPTER 7: PHOTOACTIVE SUPERCAPACITORS FOR SOLAR ENERGY 

HARVESTING AND STORAGE
4
 

 

7.1 Introduction 

Due to the intermittent nature of solar energy, energy storage is essential in systems 

which are powered by harvesting solar energy [164]. Conventionally, external energy storage 

devices such as batteries and supercapacitors are employed in conjunction with solar cells [165]. 

In the attempt to store energy in a photovoltaic device, various hybrid devices were fabricated 

and tested before [166]–[178]. In a simple form, demonstrated by several groups [166]–[172], 

[174]–[178], a cell with two compartments can be designed for accommodating a dye sensitized 

solar cell (DSSC) and a supercapacitor in a device. Most of those devices are essentially a solar 

cell and a supercapacitor in one package with three electrodes (one electrode is shared between 

the capacitor and solar cell). An external circuit, such as a diode switch, is required to connect 

the solar cell to the capacitor during energy harvesting cycle and prevent the capacitor discharge 

through the DSSC [166], [167]. In a different approach, Zhang et al., have used a modified 

counter electrode in a DSSC which demonstrated ∼100 mV open circuit voltage with a few 

minutes energy storage in a two terminal device [173]. 

Photogalvanic cells (invented in 1970s) are also capable of harvesting and storing energy 

by using two different ions (positive and negative charge carriers) in the electrolyte of a two 

4
This chapter was previously published in [179]. Permission is included in Appendix A. 
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terminal device [180]. Different types of photogalvanic cells have been investigated, so far [181], 

[182]. However, the experimental studies and the theoretical analysis show that the storage time 

is limited to the recombination rate of the positive and negative ions in the electrolyte [183]. 

Charge storage time in the range of a few minutes can be achieved in a photogalvanic cell by 

reducing the recombination rate in a cell using semiconducting electrodes [181]. 

We have devised a new structure which can convert photons to electric charges and at the 

same time store the charges in the device under the open circuit conditions. As shown in Figure 

36 (a), the new device is an electrochemical cell with porous working and counter electrodes. 

The working electrode is a composite film of a conducting polymer (Poly(3,4-

ethylenedioxythiophene) Polystyrene sulfonate and – PEDOT:PSS) and a dye deposited on a 

transparent indium tin oxide (ITO) electrode. The counter electrode is made of a porous activated 

carbon. Using porous conducting polymer (CP) and activated carbon electrodes, the device is 

essentially a supercapacitor which can store charges [20],[74], [184]. As shown in this work, 

application of the dye molecules can enhance the photovoltaic effect in the conducting polymer.  

 

Figure 36  ( a) Schematic of an electrochemical device with a composite of a conducting polymer 

and a dye as the photosensitive anode electrode (− terminal). Methyl viologen (MV
+
/MV

++
) was 

applied as the redox material in the electrolyte. (b) A fabricated photoelectrochemical cell using 

the composite film as the photosensitive electrode. 
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A photograph of the fabricated cell is shown in Figure 36(b). The presented work 

includes both the photovoltaic response and energy storage effect in the new device. Composite 

electrodes of CP with two different dyes and various concentration of the dye have been 

investigated. The results show a promising energy storage feature for a photovoltaic device. 

7.2 Experimental 

7.2.1 Materials and Equipment 

Indium tin oxide coated PET (polyethylene terephthalate plastic), porphyrin dye 

(5,10,15,20-tetraphenyl-21h,23h-porphine-Zinc), also known as ZnTPP, PEDOT:PSS (1.3 wt% 

dispersion in water), Triton X-100, ethylene glycol, methyl viologen (MV) and Tris were all 

purchased from Sigma–Aldrich. The carbon paper, as the counter electrode, was purchased from 

Y-carbon. The Ru based dye (triisothiocyanato-(2,2′:6′,6″-terpyridyl-4,4′,4″-tricarboxylato) 

ruthenium(II) tris(tetra-butylammonium)) also known as N749 was from Solaronix. The 

electrical and electrochemical measurements, including open circuit voltage test, current 

measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), 

were carried out using a desktop computer connected to a VersaSTAT 4 potentiostat. The cells 

were placed in a dark box connected via an optical fibre to a solar simulator (RST, Radiant 

Source Technology) with an internal AM 1.0 optical filter which delivered light intensity of 

80 mW cm
−2

 at its output. For the experiments, the illumination time was controlled manually by 

turning on and off the instrument shutter. The experimental setup, including the dark box and the 

shutter mechanism, was designed to eliminate the effect of stray light in the experiment. A 

picture of the setup is presented in the supplementary data section (see Figure SD1 in Appendix 

D). The optical absorption spectrum was measured using a Thermo Scientific (Evolution 201) 

UV–Vis spectrophotometer. 
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7.2.2 Electrode Fabrication 

1.25 mg of ZnTPP (or N749) was dissolved in 2.5 ml isopropanol (acetonitrile for N749). 

2.5 ml of the conducting polymer solution was made by mixing 5 wt% ethylene glycol and 

3 wt% Triton X-100 in the PEDOT:PSS [74]. Different ratio (1:0, 1:1, 1:2, 2:1, and 0:1) of the 

conducting polymer and dye solutions were mixed and sonicated for 5–20 min to achieve a 

homogeneous solution. Kapton tape was used to make a rectangular mask (1.0 cm × 0.5 cm) on 

the ITO electrode. 10 μl of the mixed solution was drop casted on the electrode and dried on a 

hotplate for 5 min at 120 °C to make the composite film on the transparent electrode. The 

electrode and a piece of Y-carbon (as the counter electrode) were placed in a disposable cuvette 

and it was filled with the electrolyte (1 mM MV in 0.1 M Tris buffer solution) to cover the 

composite film. The apparent surface area of the carbon electrode in the solution was estimated 

to 1.0 cm × 0.5 cm. The fabricated cells were not sealed. 

7.3 Results and Discussion 

First a composite film was made by drop casting a mixed solution of 1:1 ratio of PEDOT 

and porphyrin dye solutions on an ITO electrode. The molecular structure of the dye (ZnTPP) is 

shown in Figure 37(a). The electrode with 1:1 CP-dye was used as the working electrode in a cell 

with a porous carbon electrode (counter electrode) and an electrolyte with 1 mM methyl viologen 

(MV) in Tris buffer. The cell was kept in the dark for about one hour until a stable open circuit 

voltage was achieved. Then the cell was illuminated for 400 s, using the solar simulator. As 

shown in Figure 37(a), the open circuit voltage across the cell in the dark was 405 mV (the 

negative value shows that the composite film was the negative terminal of the device-

see Figure 36). The cell voltage (absolute value) was increased gradually from 405 mV to 

431 mV in 400 s of illumination. After turning off the light, unlike conventional DSSCs [185], 
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the voltage was not dropped to the dark value immediately. Instead a gradual change was 

observed and the magnitude of the cell voltage reached to 421 mV in 580 s after the cessation of 

light. The gradual increase in the cell voltage in light implies the energy storage effect (charging 

the supercapacitor). A simple explanation is that, under the open circuit condition, the 

photoexcited charges (generated in the composite) accumulate on the conducting polymer and 

charge the working electrode. The interaction between MV
+
 ions in the electrolyte and the 

positive charge on the composite can also oxidized the ions and convert them to 

MV
++

 (MV
+
 → MV

++
+e

−
). The oxidized ions (MV

++
) diffuse to the counter electrode where a 

double layer charge can be formed on the surface of the carbon electrode. The slow change in the 

voltage after illumination shows the leakage effect in the supercapacitor [52]. Nevertheless, the 

device was able to store a part of the photogenerated charges after ∼10 min. The photovoltaic 

and energy storage effects were further studied in the device by illuminating the cell for another 

400 s under the open circuit conditions. Immediately after turning off the light, the short circuit 

current was recorded. As shown in Figure 37(b), the stored charges in the device resulted in a 

dark current which was decreased from 30 μA to 18 μA in 50 s. The low short circuit current and 

gradual discharge of the device indicates a relatively large internal resistance. While the short 

circuit current was monitored, the light source was turned on for 90 s. The current was increased 

to 23 μA at the end of the illumination cycle and decreased again when the light was turned off. 

The positive current and negative open circuit voltage indicate a photovoltaic power generation 

by the device. The increase in the short circuit current under illumination also shows the 

feasibility of delivering a part of the photogenerated charges directly to a load and store some of 

the charges. It should be mentioned that due to the storage effect, the conventional current–

voltage test (scanning voltage and recording the current) cannot be applied to characterize the 
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photovoltaic effect and estimate the efficiency, short circuit current, open circuit voltage, and the 

fill-factor (FF) of the device. As shown in Figure 37(c), the voltage scan shows a large current 

even in dark, because of the supercapacitive characteristic of the device (I = C·dV/dt – where I is 

the current, C is the device capacitance, and dV/dt is the scan rate). However, in the current form, 

with relatively low short circuit current, the photo conversion efficiency is very low. 

 
Figure 37  Photovoltaic and energy storage effect in the cell with PEDOT:PSS- porphyrin dye 

composite electrode. (a) Open circuit voltage and (b) short circuit current in the dark and light. 

(c) CV in the dark with scan rate of 50 mV s
−1

. The voltages were measured with respect to the 

counter electrode (carbon electrode) potential. The molecular structure of the porphyrin dye 

(ZnTPP) is shown in the inset of Figure 37(a). 
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The storage capacitance of the device was measured using CV method. Since the working 

electrode voltage was negative, the voltage range in the CV measurement was set between 0 V 

and −1 V (Figure 37(c)). The value of the capacitance was estimated to be ∼1.04 mF from the 

width of the CV loop at −0.5 V. 

To investigate the effect of dye concentration on the energy storage and photovoltaic 

effect of the device, various composite electrodes were fabricated with CP-dye ratios of 1:0 (only 

CP), 1:1, 1:2, 2:1, and 0:1 (only dye). Figure 38(a) shows the CV results from the devices with 

those electrodes. As expected the electrode with only dye coating had very negligible 

capacitance likely due to the lack of porosity. Although due to the higher amount of CP it was 

expected to achieve the highest capacitance in the device with only CP, the electrode with one 

part CP and two parts dye showed the largest capacitance of 1.76 mF and the electrode with only 

CP had a capacitance of only 0.19 mF. To understand the capacitance increase in the composite 

electrode, SEM (Scanning Electron Microscopy) images were taken (Figure 38(b) and (c)) which 

clearly showed the structural difference between the composite and the CP films. It is likely that 

the micro cracks on the composite material enhanced the film porosity. 

The photovoltaic effect in different electrodes was studied by monitoring the change in 

the open circuit voltages in the dark and light (Figure 40). Since the capacitance of the electrode 

with only dye was negligible (Figure 38(a)), only the electrodes with the conducting polymers 

were considered in the photovoltaic test. Due to the energy storage effect, different devices 

showed different open circuit voltages in the dark, even after keeping devices in the short circuit 

(in the dark) mode for a few hours. Therefore, for a comparative study, only the change in the 

open circuit voltage from the dark (ΔV) is presented in Figure 40. The cell open circuit voltages 

voltages are demonstrated in Figure S2 in the supplementary data (see Appendix D). The largest 
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Figure 38  (a) CV results from devices with only CP, only dye, and 1:1, 1:2, 2:1 CP-dye 

composite electrodes. The scan rate was 50 mV s
−1

 and the experiment was performed in the 

dark. SEM images of electrodes with (b) only CP and (c) 1:2 CP-dye composite films. 

 

 
Figure 39  Optical absorption of the films of only CP and only dye on two ITO electrodes. 
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ΔV was −27 mV from the device with 2:1 CP-dye composite. The electrode with only CP 

showed the lowest ΔV (−12 mV). Considering the absorption spectrum in Figure 39, it seems 

that the absorption of high energy photons by the dye molecules enhances the photovoltaic 

effect. However, the larger ΔV in the composite of 2:1 CP-dye than the electrodes with higher 

dye concentration (1:1 and 1:2 CP-dye) shows the importance of the ratio between the dye and 

the conducting polymer for the photovoltaic effect. 

 

Figure 40  The change in the open circuit voltage in different cells under illumination and after 

cessation of light. 

 

Considering the semiconducting properties of conducting polymers, the structure of the 

device is similar to a DSSC in which a porous layer of TiO2 nanoparticles (semiconducting 

material) and a layer of dye molecules are applied as the photoactive electrode. However, there is 

[185],  [186]. The mechanism of the photogenerated charge storage in the composite film is not 

known yet, but it is likely that the charge is stored on the polymer chains by changing the 

oxidation state of the polymer film (pseudo capacitive charge storage) [133]. The CV experiment 

with very low scan rate (2 mV s
−1

) was performed in the dark and light on the cell (two probe 

experiment) with 2:1 CP-dye electrode to investigate the oxidation state of the composite film. 

As shown in Figure 41(a), an oxidation peak was observed at −0.78 V. Also, a very broad 
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reduction peak can be seen around −245 mV (the peak is more pronounced in the CV of the dark 

experiment-inset Figure 41 (a)). The reduction peak is under influence of the knee current. Due 

to the small peak amplitudes, the redox peaks could not be seen in the CV with fast scan rate 

(Figure 38). Nevertheless, the open circuit voltage of the cell (Figure 37(a)) is between the redox 

peaks. Hence, it is possible to change the redox state by shifting the composite electrode voltage 

to more negative value [187]. The voltage of the oxidation peak did not change in the dark and 

light, but the knee in the current was sharper under illumination, which suggests faster charge 

transfer in light than in the dark. The effect of light on the electrode properties was further 

studied by performing EIS on the cell with the 2:1 CP-dye electrode. The Nyquist plot is 

presented in Figure 41(b). The impedance at high frequencies showed a resistive behaviour with 

the series resistance of 1.52 kΩ. Such a large resistance explains the limited short circuit current 

in the cell (Figure 37(b)). To reduce the resistance, an electrolyte with higher ion concentration 

can be used. Also the contact resistance between the composite film and the ITO electrode has to 

be improved. The semi-circle with almost linear tail in the Nyquist plot suggests that the 

polarization is due to a combination of diffusion and kinetic processes [155]. The presented 

equivalent circuit model (inset Figure 41(b)) was applied to simulate the cell response in the dark 

and light using ZSim software. In the model, RS represents the series resistance, CD is the 

double layer capacitance, RP is the parallel resistance, Rct is the charge transfer resistance, 

and Q is the constant phase element with power of n. The estimated values of the elements in the 

model are listed in Table 7. In both the dark and light cases, the estimated value for n is close to 

1 which implies a capacitive behaviour (transmission line model) [136] and [188]. The values of 

CD, Q, and n were almost the same in the dark and light. Hence, as expected, the effect of light 

on the capacitive behaviour of the cell was negligible. The largest difference was observed 
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in Rct and RP, which again shows higher charge transfer rate in light than in the dark and larger 

cell current in light. 

Table 7  Comparison between impedance parameters in the dark and light. 

Description Rs (kΩ) CD (μF) RP (kΩ) Rct (kΩ) Q (S sec
n
) n 

Dark 1.52 4.1 9.11 1.77 8.26E-04 0.92 

Light 1.52 4.02 6.89 1.51 8.28E-04 0.96 

 

 

Figure 41  Photoelectric study of the cell with 2:1 CP-dye composite electrode (a) CVs in dark 

and light with slow scan rate (2 mV s
−1

). (Inset) the reduction peak under influence of the current 

knee. (b) Electro impedance spectroscopy in the dark and light. The proposed model for the cell 

is shown inside the figure. The simulated results for the dark and light are also presented. 
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The concept of using a CP-dye composite for making photovoltaic devices with 

embedded energy storage was further developed by using a Ru based dye molecule 

(see Figure 42 for the molecular structure of N749) instead of the porphyrin dye in a 1:1 CP-dye 

composite. The photovoltaic test of the device showed a much slower charging cycle with a large 

potential difference under illumination. As shown in Figure 42, the cell voltage (absolute value) 

was increased from 42 mV to 240 mV in 2500 s (ΔV = 198 mV). Also, the cell showed an 

incredibly high charge storage stability. After turning off the light the open circuit voltage was 

reduced by only 20 mV (∼10% of ΔV) in 2 h. However, the short circuit current was in sub 

micro amp range (the result is not presented). In addition, Ru based dyes are relatively expensive 

and, potentially, they are not suitable for low cost devices such as the photoactive supercapacitor 

studied in this work. 

 

Figure 42  Open circuit voltage of a cell with CP and N749 dye composite electrode in light and 

dark. Long storage time of more than 7500 s was achieved with only 20 mV cell voltage change 

in the dark. The inset Figure shows the molecular structure of N749. 

 

The energy diagram in Figure 43 has been presented to suggest the charge cycle in the 

devices with ZnTPP/N749 dye molecule. Similar to a DSSC, absorbed photons by the dye 

molecules (or CP) generate excited states. The electron in the excited state can reduce the 

PEDOT:PSS polymer. In this situation the electron is not mobile. This resembles a localized 
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charge in a higher energy state in the polymer. Also, the dye molecules receive electrons from 

methyl viologen through another redox reaction (MV
+
 → MV

++
+e

−
) and MV

++
 ions diffuse 

toward the counter electrode. Under the open circuit conditions, the reduced polymer at the 

composite electrode and the oxidized methyl viologen at the counter electrode generate a 

potential difference across the cell. In the short circuit mode, the carbon electrode delivers 

electrons to methyl viologen in the electrolyte and ITO removes electrons from PEDOT:PSS. 

Since holes are more mobile than electrons in the polymer, the generated hole can travel through 

the polymer film where the stored electron can be released through a recombination process. The 

energy levels in Figure 43 have been obtained from reported values in other publications [189]–

[194]. The significant difference between the two dyes is in the LUMO level. The excited 

electrons in ZnTPP can be transferred to the conduction band of the polymer and from there, 

they would be trapped in the localized states. However, the excited electrons in N749 move 

directly to the localized states. This can explain the slow increase in the voltage (Figure 42) and 

low current in the device with the Ru dye, as the direct electron transfer to the localized states 

has likely lower probability than trapping the charges from the conduction band in the ZnTPP 

case. Nevertheless, a bottleneck in the electron cycle is the redox potential of MV. A redox 

mediator with lower energy than methyl viologen would facilitate the charge circulation. A detail 

energy study of the composite material is required for better understanding of the mechanism of 

charge cycle and storage in the device. 
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Figure 43  Energy diagram of the photoactive supercapacitor. The energy levels are versus the 

vacuum level. The localized states below the conduction band of the polymer show the energy 

states when the polymer is reduced. The diagram shows the energy levels for both ZnTPP and 

N749 dyes. 
 

7.4 Conclusions 

Using composite materials of a conducting polymer and dye molecules, a new 

photoelectrochemical device was introduced which demonstrated an internal energy storage 

capability. The effect of dye concentration on the energy storage and photovoltaic effects were 

investigated. It was found that the addition of the dye increases the capacitance in the conducting 

polymer and enhances the photovoltage in the device. Slow scan CV and EIS study revealed that 

the electrical properties of the composite electrode changes in presence of light by facilitating the 

charge transfer. Also, application of N749 dye molecule showed significant improvement in the 

photovoltage and charge stability in the cell. Further study is required to investigate the effect of 

materials and concentrations on the photovoltaic and energy storage properties of the device. 

Additionally, for practical applications, there are technical issues, such as sealing the device, 

which must be addressed after device development. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORKS 

 

As part of this work, different projects including the self-discharge reduction of 

supercapacitors, the modeling of self-discharge knowing the blocking layer thickness and their 

simulation for various thicknesses, the enhancement of PEDOT:PSS double layer capacitance,  

and the study of photoactive dyes and PEDOT:PSS as electrode material for 

photoelectrochemical supercapacitors  were completed. The research activities contributed to the 

enhancement of supercapacitors energy storage for renewable energy applications. 

Supercapacitor leakage problem has been intensively studied and documented in 

literature. It has been found that the main cause of supercapacitor self-discharge reside in 

electrochemical reactions in the electrolyte on the surface of the electrodes. Electrons in the 

electrode cross the interface between the electrode and the electrolyte, to engage in the Faradic 

reactions. In this work we have successfully reduced the leakage current by ~78% in a carbon 

based supercapacitor by coating the surface of the electrodes with a thin PPO insulating film 

with an approximate thickness of ~1.5 nm. Although the self discharge was reduced, the 

capacitance was also decreased. A mathematical model was then developed to study how the 

thickness and type of blocking layer affects the self-discharge and the energy density of the 

device. The tunneling of the electrons engaging in the electrochemical reactions and the kinetics 

of those reactions were considered to develop the model. Following the model, a computational 

code was written in Matlab to simulate the leakage and energy profiles of different thicknesses of 

the blocking layer (Appendix F). The second research project confirmed the first and showed 

that the tool developed can be used to predict the self-discharge behaviors of hypothetical 
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devices with different layers of different thicknesses. A third research discovered the optimal 

concentration of Triton- X 100 in a spin coated PEDOT:PSS electrode that enhanced the 

conducting polymer's double layer capacitance. The capacitance was increased to 20 F/g for a 

concentration of 3 wt % triton- X 100. The polymer was pretreated with 5 wt % ethylene glycol. 

The addition of the right amount of the surfactant not only increased the conductivity of the 

polymer, but also modified its surface structure increasing the capacitance. It was also found that 

different concentration of the surfactant yielded different porosity changes of the polymer. A 

final research project developed a photoelectrochemical device made with a composite material 

of dye and PEDOT:PSS. The PEDOT: PSS was pre-treated with 3 wt % of Triton X-100. The 

study of the effect of dye concentration on the device showed that their addition improved the 

capacitance and the photovoltage. The counter electrode of the device was a carbon-based 

electrode. 

To continue this work, future works based on the following ideas can be explored: 

 Use a semiconducting material that would be able to act as a blocking layer when the 

device is not connected to any external load but switch to non-blocking mode when the 

device is recharging or connected to a load. This would allow the reduction of the self-

discharge not only in EDLCs but also in pseudocapacitive devices. 

 Use a multi-layer structure of PEDOT:PSS where different superimposed spin coated 

layers of the conducting polymer are treated with different Triton X-100 concentrations. 

This study will shed more light on how the diffusion of ions is affected by the pores size 

and morphology of a supercapacitor electrode. 

 Study how the ratio of the polymer to dye concentration increases the open circuit voltage  
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and photocurrent as well as the capacitance of the photoelectrochemical device. Different 

types of carbon counter electrodes can also be studied for an optimum operation of the 

device.  
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER 5 
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APPENDIX D: SUPPLEMENTARY MATERIAL FOR CHAPTER 7 
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APPENDIX E: MATLAB CODE FOR THE POTENTIOSTAT IN CHAPTER 3 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%                                                                                                                                                 % 

%    Charging And Discharging of Supercapacitor+ two probes Current voltammetry             % 

%   measurements 

%                     June 2013- Research                                                                                          % 

%                     Author: Tete Tevi                                                                                               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 %                  Tete Tevi,    June 2012 - Research (Matlab Version: MATLAB R2010a) 

  

function varargout = Potentiostat(varargin) 

% POTENTIOSTAT M-file for Potentiostat.fig 

%      POTENTIOSTAT, by itself, creates a new POTENTIOSTAT or raises the existing 

%      singleton*. 

% 

%      H = POTENTIOSTAT returns the handle to a new POTENTIOSTAT or the handle to 

%      the existing singleton*. 

% 

%      POTENTIOSTAT('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in POTENTIOSTAT.M with the given input arguments. 

% 

%      POTENTIOSTAT('Property','Value',...) creates a new POTENTIOSTAT or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before Potentiostat_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to Potentiostat_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help Potentiostat 

  

% Last Modified by GUIDE v2.5 10-Jul-2012 11:45:44 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 
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                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @Potentiostat_OpeningFcn, ... 

                   'gui_OutputFcn',  @Potentiostat_OutputFcn, ... 

                   'gui_LayoutFcn',  {} , ... 

                   'gui_Callback',   {}); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    {varargout{1:nargout}} = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before Potentiostat is made visible. 

function Potentiostat_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to Potentiostat (see VARARGIN) 

  

% Choose default command line output for Potentiostat 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes Potentiostat wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

   

% --- Outputs from this function are returned to the command line. 

function varargout = Potentiostat_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

 % --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 
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clear all;clc;close all; 

  

DIO = digitalio('mcc',0); 

lines = addline(DIO,7, 0,'out');putvalue(DIO,0);% Relays :  open the input 

  

 AO= analogoutput('mcc',0); 

chano = addchannel(AO,1); 

duration = 1; %1 second acquisition 

set(AO,'SampleRate',8000) 

set(AO,'TriggerType','Manual') 

ActualRate = get(AO,'SampleRate'); 

t(1)=0; 

putdata(AO,0); 

start(AO) 

trigger(AO) 

stop(AO) 

delete(AO) 

clear AO  

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

 % --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

clear all;clc;close all; 

PORTA = digitalio('mcc',0); 

lines = addline(PORTA,7, 0,'out');putvalue(PORTA,0);% Relays :  open the input 

%% Creating .mat file 

  

prompt = {'Enter file name:'}; 

dlg_title = 'Matlab File Name'; 

num_lines = 1; 

def = {'YC-YC-TBAP1M-Pot-May25_Al2O3_4nm.mat'}; 

file_namePOT = inputdlg(prompt,dlg_title,num_lines,def); 

  

%% User interface 

time=input('Charging Time (seconds) = '); % charging time 

time_OC=input('Open Circuit Time (seconds) = '); % discharging time 

cyclePOT=input('Cycles = '); % Charging and discharging cyles 

voltage=input('Charging voltages {V1 V2 ... #}(Volts) = ');% Charging voltages 

volt=(voltage+4.986)/2; 

s=input('Current Range Selector Position  1: {10 mA to 10 uA}, 2: {100 uA to 100 nA} , or 3: {1 

uA to 1 nA}  = ');% Charging voltages 

R={1e+3 1e+5 1e+7};% Virtual Resistance value 

  

 for k=1:cyclePOT; 
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 putvalue(PORTA,1);   %% Relays :  close input 

AO= analogoutput('mcc',0); 

chano = addchannel(AO,1); 

set(AO,'SampleRate',8000) 

set(AO,'TriggerType','Manual') 

ActualRate = get(AO,'SampleRate'); 

t(1)=0; 

putdata(AO,volt(k)); 

start(AO) 

trigger(AO) 

stop(AO) 

%% Acquisition 

AI = analoginput('mcc',0);chani = addchannel(AI, {0 1}); %  Analog Inputs 0 & 2 

set(AI,'SampleRate',8000) 

set(AI,'SamplesPerTrigger',8000) 

set(AI,'TriggerType','Manual') 

start(AI) 

  trigger(AI) 

  data = getdata(AI); 

  dat(1)=data(1,1);dat_I(1)=data(1,2); 

  

%% 

  for j=1:time_OC+time; 

  tStart = tic; 

   stop(AI) 

   start(AI) 

  trigger(AI) 

  data = getdata(AI,1); 

  dat(j+1)=data(1);dat_I(j+1)=data(2);t(j+1)=t(j)+1;%1 second acquisition 

  figure(k) 

 subplot(2,1,1) 

plot(t,dat) 

title('Self Discharge-Voltage') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2) 

plot(t,dat_I/R(s))   

title('Self Discharge-Current') 

xlabel('Elapsed Time(s)') 

ylabel('Current(A)') 

grid on; 

    if j==time 

       putvalue(PORTA,0); 

    else 

    end; 
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 elapsedtime= toc(tStart); 

 pause(1-elapsedtime); 

  end 

   

  %% 

  

delete(AI) 

clear AI 

delete(AO) 

clear AO 

  

%% Write data to excel file 

  

%title1 = {'Elapsed Time(second)','Potential(Volts)'; 0,0}; title2 = {'Elapsed 

Time(second)','Current(Amps)'; 0,0}; 

% xlswrite(file_namePOT{1}, title1, 2*k-1,'A1');xlswrite(file_namePOT{1}, title2, 2*k,'A1'); 

 % D1(:,1)=t';D1(:,2)=dat';D2(:,1)=t';D2(:,2)=(dat_I/R(s))'; 

% xlswrite(file_namePOT{1},D1,2*k-1,'A2');xlswrite(file_namePOT{1},D2,2*k,'A2'); 

  

%% save to matlab file 

  

D1(:,2*k-1)=t';D1(:,2*k)=dat';D2(:,2*k-1)=t';D2(:,2*k)=(dat_I/R(s))'; 

save(file_namePOT{1}, 'D1*','D2*') 

  

%% 

 clear dat; clear dat_I;clear t; % clear D1; clear D2; 

end 

   

%% 

disp('END OF EXPERIMENT'); 

  

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

   

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%                                                                                                                                                 % 

%                   Current Voltammetry of Supercap                                                                       % 

%                      June 2012 - Research                                                                                         % 

%                     Author: Tete Tevi                                                                                               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%  
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 % (Matlab Version: MATLAB R2010a) 

clear all;clc;close all; 

PORTA = digitalio('mcc',0); 

lines = addline(PORTA,7, 0,'out');putvalue(PORTA,0);% Relays :  open the input 

%% Creating .mat file 

  

prompt = {'Enter file name:'}; 

dlg_title = 'Matlab File Name'; 

num_lines = 1; 

def = {'YC-YC-TBAP1M-CV-May25_Al2O3_4nm.mat'}; 

file_name= inputdlg(prompt,dlg_title,num_lines,def); 

  

 %% User interface 

number=input('Number of CVs = '); 

Vin=input('Initial Potential (V) = ');  

V1=input('Vertex 1(Smallest Vertex) Potential (V) {V1 V2 ... #}= ');  

V2=input('Vertex 2 Potential (V) {V1 V2 ... #}= '); 

Scan_rate=input('Scan Rate (V/s)= '); 

cycle=input('Cycles = '); 

s=input('Current Range Selector Position  1:{10 mA to 10 uA}, 2:{100 uA to 100 nA} , or 3:{1 

uA to 1 nA} = ');% Charging voltages 

R={1e+3 1e+5 1e+7};% Virtual Resistance value 

  

     for n=1:number; 

 AO= analogoutput('mcc',0); 

chano = addchannel(AO,1); 

set(AO,'SampleRate',8000) 

set(AO,'TriggerType','Manual') 

ActualRate = get(AO,'SampleRate'); 

AI = analoginput('mcc',0);chani = addchannel(AI, {0 1}); %  Analog Inputs 0 & 2 

set(AI,'SampleRate',8000) 

set(AI,'SamplesPerTrigger',8000) 

set(AI,'TriggerType','Manual') 

  

putvalue(PORTA,1);   %% Relays :  close input 

t(1)=0;j=1; 

V(n)=(Vin+4.999)/2; 

putdata(AO,V(n)); 

start(AO) 

trigger(AO) 

stop(AO) 

stop(AI) 

 start(AI) 

  trigger(AI) 

  data = getdata(AI,1);dat(1)=data(1); 
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      for k=1:cycle; 

    while V(n)<(V2(n)+4.999)/2; 

   tStart = tic; 

   V(n)=V(n)+Scan_rate; 

    stop(AI); 

putdata(AO,V(n)); 

start(AO) 

trigger(AO) 

stop(AO) 

% Acquisition 

  start(AI) 

  trigger(AI) 

  data = getdata(AI,1); 

  dat(j+1)=data(1);dat_I(j+1)=data(2);t(j+1)=t(j)+1;%1 second acquisition 

  stop(AI) 

  figure(n) 

 subplot(2,1,1)% 

plot(t,dat) 

title('Current Voltammetry (CV)') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2)%figure(2*k) 

plot(dat,dat_I/R(s))   

title('Current Voltammetry (CV)') 

xlabel('Potential(V)') 

ylabel('Current(A)') 

grid on; 

  j=j+1;elapsedtime= toc(tStart); 

 pause(1-elapsedtime); 

     end 

while V(n)>(V1(n)+4.999)/2; 

   tStart = tic; 

   V(n)=V(n)-Scan_rate; 

    stop(AI); 

putdata(AO,V(n)); 

start(AO) 

trigger(AO) 

stop(AO) 

% Acquisition 

  start(AI) 

  trigger(AI) 

  data = getdata(AI,1); 

  dat(j+1)=data(1);dat_I(j+1)=data(2);t(j+1)=t(j)+1;%1 second acquisition 

  stop(AI) 

  figure(n) 
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 subplot(2,1,1) 

plot(t,dat) 

title('Current Voltammetry (CV)') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2) 

plot(dat,dat_I/R(s))   

title('Current Voltammetry (CV)') 

xlabel('Potential(V)') 

ylabel('Current(A)') 

grid on; 

  j=j+1;elapsedtime= toc(tStart); 

 pause(1-elapsedtime); 

end 

  

    while V(n)<(V2(n)+4.999)/2; 

   tStart = tic; 

   V(n)=V(n)+Scan_rate; 

    stop(AI); 

putdata(AO,V(n)); 

start(AO) 

trigger(AO) 

stop(AO) 

% Acquisition 

  start(AI) 

  trigger(AI) 

  data = getdata(AI,1); 

  dat(j+1)=data(1);dat_I(j+1)=data(2);t(j+1)=t(j)+1;%1 second acquisition 

  stop(AI) 

  figure(n) 

 subplot(2,1,1)%figure(2*k-1) 

plot(t,dat) 

title('Current Voltammetry (CV)') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2)%figure(2*k) 

plot(dat,dat_I/R(s))   

title('Current Voltammetry (CV)') 

xlabel('Potential(V)') 

ylabel('Current(A)') 

grid on; 

  j=j+1;elapsedtime= toc(tStart); 

 pause(1-elapsedtime); 

    end 
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       end 

putvalue(PORTA,0);   %% Relays :  open input 

  

delete(AI) 

clear AI 

delete(AO) 

clear AO  

%% Write data to excel file 

  

% title1 = {'Elapsed Time(second)','Potential(Volts)'; 0,0}; title2 = 

{'Potential(Volts)','Current(Amps)'; 0,0}; 

% xlswrite(file_name{1}, title1, 2*n-1,'A1');xlswrite(file_name{1}, title2, 2*n,'A1'); 

% D1(:,1)=t';D1(:,2)=dat';D2(:,1)=D1(:,2);D2(:,2)=(dat_I/R(s))'; 

% xlswrite(file_name{1},D1,2*n-1,'A2');xlswrite(file_name{1},D2,2*n,'A2'); 

%% save to matlab file 

%   

A{n}(:,2*n-1)=t';A{n}(:,2*n)=dat';B{n}(:,2*n-1)=t';B{n}(:,2*n)=(dat_I/R(s))'; 

 save(file_name{1}, 'A*','B*') 

  

%% 

 clear dat; clear dat_I;clear t; %clear D1; clear D2; 

%B = repmat(D1,2,1) 

    end 

     

  

disp('END OF EXPERIMENT'); 

  

     %NUMERIC = xlsread('C:\Users\tete\Documents\MATLAB\file_name{1}.xls',1); 

  

  

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

   

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

   

clear all;clc;close all; 

dname = uigetfile('C:\');% Users\tete\Desktop\My Documents\MATLAB 

s=load(dname); 

  

A = getfield(s, 'A'); 

B = getfield(s, 'B'); 

  

C=size(A);n=C(:,2);%n=n/2; 

Time=B{1}(:,1); 
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Voltage=A{1}(:,2) 

Current=B{1}(:,2) 

  

figure(1) 

 subplot(2,1,1) 

plot(Time,Voltage); 

title('Current Voltammetry (CV)') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2) 

% hold on; 

plot(Voltage,Current); 

title('Current Voltammetry (CV)') 

xlabel('Potential(V)') 

ylabel('Current(A)') 

grid on; 

  

 % %% Creating .xls file 

%   

% prompt = {'Enter file name:'}; 

% dlg_title = 'Excel File Name'; 

% num_lines = 1; 

% def = {'YC-YC-TBAP1M-Pot-May25_Al2O3_4nm.xls'}; 

% file_name = inputdlg(prompt,dlg_title,num_lines,def); 

% %% Write data to excel file 

%   

%  title1 = {'Elapsed Time(second)','Potential(Volts)','Current(Amps)'; 0,0,0}; %title2 = 

{'Potential(Volts)','Current(Amps)'; 0,0}; 

%  xlswrite(file_name{1}, title1, Time,'A1');xlswrite(file_name{1}, title1, Voltage,'B1'); 

%  xlswrite(file_name{1}, title1, Voltage,'C1'); 

  

 %hold on; 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

clear all;clc;close all; 

  

dname = uigetfile('C:\');% Users\tete\Desktop\My Documents\MATLAB 

s=load(dname); 

  

D1 = getfield(s, 'D1'); 
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D2 = getfield(s, 'D2'); 

  

C=size(D1);n=C(:,2);n=n/2; 

  

 k=1; 

 while k<=n 

 hold on 

 figure(k) 

 subplot(2,1,1) 

plot(D1(:,2*k-1),D1(:,2*k)); 

title('Self Discharge-Voltage') 

xlabel('Elapsed Time(s)') 

ylabel('Potential(V)') 

grid on; 

subplot(2,1,2) 

hold on; 

plot(D2(:,2*k-1),D2(:,2*k)); 

title('Self Discharge-Current') 

xlabel('Elapsed Time(s)') 

ylabel('Current(A)') 

grid on; 

 k=k+1;hold on; 

 end 

  

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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APPENDIX F: MATLAB CODE FOR CHAPTER 5 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                                                                                                 % 

%                    Discharging Profile of Supercap knowing thickness                                           % 

%                          of blocking layer 

%                      July 2013 - Research                                                                                          % 

%                     Author: Tete Tevi                                                                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Author : Tete Tevi, July 2013 (Matlab Version: MATLAB R2010a) 

  

% Nota: First copy and paste your self discharge data in two new .txt files and 

% save them in the same folder where this code is saved. Run the code.  

% Nota: This code needs the Ezyfit toolbox to be installed 

  

  

%% User interface 

  

 clear all;clc;close all; 

prompt1 = {'Enter "No blocking layer" file name:'}; 

dlg_title1 = 'Text File Name'; 

num_lines1 = 1; 

def1 = {'NoPPO.txt'}; 

file_name1= inputdlg(prompt1,dlg_title1,num_lines1,def1); 

  

close all; 

prompt2 = {'Enter "with blocking layer" file name:'}; 

dlg_title2 = 'Text File Name'; 

num_lines2 = 1; 

def2 = {'PPO.txt'}; 

file_name2= inputdlg(prompt1,dlg_title2,num_lines2,def2); 

%V_ch=input('Charging Voltage (Volts)='); 

cycle=input('Number of Thickness Inputs = '); % discharging cyles 

thick=input('Thicknesses {th1 th2 ... #}(nanometer(s)) = ');% Charging voltages 

display(' '); 

display('-----------------------------'); 

  

display('Note on PPO on Y-Carbon: Dielectric constant=3.5 '); 

display('--Blocking layer thickness(nm)=1.5'); 
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display('-- Specific Capacitance before blocking layer(F/g)=12.99');display('--Specific 

Capacitance after blocking layer(F/g)=5.7'); 

display('-----------------------------'); 

display(' '); 

thb=input('blocking layer thickness (in nanometers)= '); 

diek=input('Dielectrique constant of the blocking layer= '); 

% display('Note: PPO dielectric constant=3.5'); 

C1=input('Specific Capacitance before blocking layer(F/g)= '); 

C2=input('Specific Capacitance after blocking layer(F/g)= '); 

% C11=input('Capacitance before blocking layer(F)= '); 

% C22=input('Capacitance after blocking layer(F)= '); 

%% Load data 

data1 = load(file_name1{1});datNoPPO =data1; 

data2 = load(file_name2{1});datPPO =data2; 

V_ch=data1(1,2); 

  

size=size(datNoPPO); 

size=size(1); k=1;last_time=size; 

 for i=1:size; 

 j=50*(i-1)+1; %% Sampling 

 

       if j > size 

      else 

      dataNoPPO(k,:)= datNoPPO(j,:); 

      dataPPO(k,:)= datPPO(j,:); 

       

      end 

k=k+1; 

 end 

  

%% Curve fitting 

xdataNoPPO=dataNoPPO(:,1); 

ydataNoPPO=dataNoPPO(:,2);        

    

xdataPPO=dataPPO(:,1); 

ydataPPO=dataPPO(:,2);        

    

%% 

figure(1) 

plot(xdataNoPPO,ydataNoPPO,'*'); 

%legend('=Experimental Data; V(t)=Fitted Curve'); 

title(' Curve Fitting - Activation controlled Faradaic-No blocking layer ') 

xlabel('t(s)') 

ylabel('V(volt)') 
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showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

legend('Experimental Data',' V(t)=Fitted Curve  ') 

  

param=getfield(lastfit, 'm'); 

  

a=param(1);b=param(2);c=param(3); 

  

dvdt = diff(ydataNoPPO)./diff(xdataNoPPO); %% take the discrete derivative 

  

  

k0=-dvdt./ydataNoPPO(1:end-1);% 

  

%plot(ydataNoPPO(1:end-1),k0,'r--') 

%  t_prime=xdata+c; 

%  for i=1:size(xdata); 

%  dv_dt(i)=-b/t_prime(i); 

%  k0(i)=-dv_dt(i)/ydata(i); 

%   

%% 

figure(2) 

 plot(ydataNoPPO(1:end-1),k0,'b--');% ,'*' 

title(' k Versus Voltage - No blocking layer') 

xlabel('V(Volt)') 

ylabel('k') 

  

showfit('k(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

legend(' k=(-V)/(\DeltaV/\Deltat)',' Fitted Curve  ') 

param=getfield(lastfit, 'm'); 

  

aNo=param(1);tauNo=param(2); 

  

RNo=getfield(lastfit, 'r'); 

EoNo=tauNo*log(1/(aNo)); 

AlphaNo=(25.693e-3*(1/tauNo)); 

  

  

%% Write Ko(v) to text file 

koNv(:,1)=xdataNoPPO(1:end-1); 

koNv(:,2)=k0'; 

  

  

fileID = fopen('Ko(v)NoPPO.txt','w'); 

%fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 

fprintf(fileID,'%6.2f %12.8f\n',koNv); 

fclose(fileID); 

  



www.manaraa.com

 

137 
 

  

%% 

figure(11) 

plot(xdataPPO,ydataPPO,'*'); 

%legend('=Experimental Data; V(t)=Fitted Curve'); 

title(' Curve Fitting - Activation controlled Faradaic- blocking layer ') 

xlabel('t(s)') 

ylabel('V(volt)') 

  

  

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

  

legend(' Experimental Data',' Fitted Curve  ') 

param=getfield(lastfit, 'm'); 

  

a=param(1);b=param(2);c=param(3); 

  

dvdtp = diff(ydataPPO)./diff(xdataPPO); %% take the discret derivative 

k0vp=-dvdtp./ydataPPO(1:end-1); 

%plot(ydataPPO(1:end-1),k0,'r--') 

%  t_prime=xdata+c; 

%  for i=1:size(xdata); 

%  dv_dt(i)=-b/t_prime(i); 

%  k0(i)=-dv_dt(i)/ydata(i); 

%   

%% 

figure(12) 

 plot(ydataPPO(1:end-1),k0vp,'b--');% ,'*' 

title(' k Versus Voltage - blocking layer') 

xlabel('V(Volt)') 

ylabel('k') 

  

showfit('k(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

  

legend(' k=(-V)/(\DeltaV/\Deltat)',' Fitted Curve  ') 

paramk=getfield(lastfit, 'm'); 

  

ap=paramk(1);taup=paramk(2); 

Rp=getfield(lastfit, 'r'); 

Eop=taup*log(1/(ap)); 

Alphap=(8.314*298.15/(96500*taup)); 

  

%% Write Ko(v) to text file 

kov(:,1)=xdataPPO(1:end-1); 

kov(:,2)=k0'; 
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fileID = fopen('Ko(v)PPO.txt','w'); 

%fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 

fprintf(fileID,'%6.2f %12.8f\n',kov); 

fclose(fileID); 

  

  

%% Beta plotting 

%  ydataNoPPO(1:end-1),k0-----ydataPPO(1:end-1),k0vp---length(k0) 

  

 ybeta=log(k0vp.\(k0*(-10*thb))); 

  

 figure(112) 

 plot(ydataPPO(1:end-1),ybeta,'b--');% ,'*' 

title(' Beta Versus Voltage ') 

xlabel('V(Volt)') 

ylabel('Beta') 

  

 figure(113) 

 xbeta2=0:0.05:2;  

  

  for i=1:length(xbeta2); 

 ybeta2(i)=log((ap*exp(xbeta2(i)/taup)/(aNo*exp(xbeta2(i)/tauNo))))/(-10*thb); 

 end  

  

 plot(xbeta2,ybeta2,'b--');% ,'*' 

title(' Beta Versus Voltage ') 

xlabel('V(Volt)') 

ylabel('Beta') 

showfit('k(V)=a*V+b','fitlinewidth',2,'fitcolor','red'); 

  

%AlphaNo 

vbeta=aNo*ydataPPO(1:end-1); 

ybeta3=(ydataPPO(1:end-1)/taup-log(-dvdtp./vbeta))/(10*thb);           

  

figure(114) 

 plot(ydataPPO(1:end-1),ybeta3);% ,'*' 

title(' Beta Versus Voltage ') 

xlabel('V(Volt)') 

ylabel('Beta') 

showfit('k(V)=a*V+b','fitlinewidth',2,'fitcolor','red'); 

parambeta=getfield(lastfit, 'm'); 

Coeff_beta=parambeta 

  

%% Beta Estimation through k(P.624  Allen Bard book) Electron transfer by tunneling through 

blocking films 
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% knowing a specific thickness in nanometer 

   

for l=1:cycle; 

mm=(1/tauNo-1/taup)/(thb*1e-9);nn=-log(ap/aNo)/(thb*1e-9); 

  

th=thick(l); 

Vol=0:0.001:V_ch;Vol=Vol'; 

% size=size(Vol); 

% size=size(1); 

  

for i=1:length(Vol); 

kx(i)=aNo*exp(Vol(i)*(1/tauNo))*exp(-th*1e-9*mm*Vol(i)-th*1e-9*nn); 

end 

figure(32) 

 plot(Vol,kx,'b--');% ,'*' 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('ko') 

  

  

showfit('ko(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

  

paramx=getfield(lastfit, 'm'); 

  

Rx=getfield(lastfit, 'r'); 

  

ax=paramx(1);taux=paramx(2); 

axk(l)=ax;tauxk(l)=taux;Rxk(l)=Rx;Eoxk(l)=tauxk(l)*log(1/(axk(l))); 

Alphaxk(l)=(8.314*298.15/(96500*tauxk(l))); 

% %% Write Kox(v) to text file 

% kox(:,1)=Vol; 

% kox(:,2)=kx'; 

%  

%  

% fileID = fopen('Kox(v)PPO.txt','w'); 

% %fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 

% fprintf(fileID,'%6.2f %12.8f\n',kox); 

% fclose(fileID); 

  

%% Plotting V versus t : Diff. equation solving 

  

  

ode1=@(x,y)-axk(l)*y*exp(y/tauxk(l)); 

% Call Solver With Function Name,  

% Independent Variable Range and Initial Value of Dependent Variable 

end_of_time=data1(last_time,1); 
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{x,y}=ode113(ode1,{0:end_of_time},V_ch); % {x,y}=ode113(ode1,{0:0.1:size},);  

% Plotting Segment 

xdataxk(:,l)=x;ydataxk(:,l)=y; 

figure (41) 

plot(x,y,'b--') 

  

xlabel('t(s)') 

ylabel('V(volt)') 

  

%title('Solution to dV/dt = -ko*V for desired thickness') 

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

paramvx=getfield(lastfit, 'm'); 

  

avx=paramvx(1);bvx=paramvx(2);cvx=paramvx(3); 

avxk(l)=avx;bvxk(l)=bvx;cvxk(l)=cvx; 

  

end 

  

%% Plot all the graphs 

  

Markert={':','-','--','-.','-*','-+','-o','-^','-d','-v','-s','-<','->','-p','-h'}; 

  

  

siz=length(xdataxk); 

k=1; 

 for i=1:siz; 

 j=100*(i-1)+1; 

  

      if j > siz 

      else 

      xdatxk(k,:)= xdataxk(j,:); 

      ydatxk(k,:)= ydataxk(j,:); 

       

      end 

k=k+1; 

 end 

  

for l = 1:cycle 

         

    legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    figure (7) 

    plot(xdatxk(:,l),ydatxk(:,l),mark) 

    legend(legendInfo) 

    xlabel('t(s)') 

    ylabel('V(volt)') 
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    %title('Self discharge voltage profiles for different thicknesses') 

    hold on 

end 

  

  

for l = 1:cycle 

    Vol=0:0.025:V_ch;Vol=Vol'; 

    

  

    legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    figure(33) 

 plot(Vol,axk(l)*exp(Vol/tauxk(l)),mark);% ,'*' 

 legend(legendInfo) 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('ko(1/s)')  

hold on 

end 

  

  

%% Energy  

epsi=8.854187817620e-12; 

  

Cbl=1/(1/C2-1/C1); 

% Cbl1=1/(1/C22-1/C11); 

  

for l = 1:cycle 

      Vol=(0:0.001:V_ch)'; 

    siz=length(Vol); 

k=1; 

  for i=1:siz; 

 j=100*(i-1)+1; 

  

      if j > siz 

      else 

      Vot(k,:)= Vol(j,:); 

      Vot(k,:)= Vol(j,:); 

       

      end 

k=k+1; 

  end 

for i=1:length(Vot); 

 Vots(i)=Vot(i)*Vot(i); 

 Vots=Vots'; 

end 
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   legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    Cbll=Cbl*thb/thick(l); 

    spec_capacitance_bl(l)= 1/(1/Cbll+1/C1); 

%     Cbll1=Cbl1*thb/thick(l); 

%     capacitance_bl(l)= 1/(1/Cbll1+1/C11); 

    %Leakage_current(l)=(2-ydataxk(1,l))*capacitance_bl(l); 

    En=(0.5*Vots/((1/C1+1/Cbll)))'; 

   % Enn(:,l)=En;% Find a solution 

    figure(34) 

 plot(Vot,En,mark);% ,'*' 

 legend(legendInfo) 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('E(J/g)')  

hold on 

end 

  

for l = 1:cycle 

size=length(ydatxk); 

for i=1:size; 

datavk= ydatxk(:,l); 

 datvk(i)=datavk(i)*datavk(i); 

  

end 

  

  

    legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    Cbll=Cbl*thb/thick(l); 

    Enr(:,l)=(0.5*(datvk)/(1/C1+1/Cbll))'; 

    delta_E(l)=abs(Enr(1,l)-Enr(size,l)); 

    Error_E(l)=delta_E(l)/Enr(1,l); 

    figure(35) 

 plot(ydatxk(:,l),Enr(:,l),mark,'Linewidth',1.25);% ,'*' 

 legend(legendInfo) 

 %title(' Energy Versus discharge Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('E(J/g)')  

hold on 

  

figure(36) 

 plot(xdatxk(:,l),Enr(:,l),mark,'Linewidth',1.25);% ,'*' 

 legend(legendInfo) 

 %title(' Energy Versus Time - for the desired thickness') 
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xlabel('t(s)') 

ylabel('E(J/g)')  

hold on 

end 

%axk(l)=ax;tauxk(l)=taux;Rxk(l)=Rx;Eoxk(l)=tauxk(l)*log(1/(axk(l))) 

  

 Energy_loss(:,2)= delta_E';Energy_loss(:,1)=thick'; 

Energy_error(:,2)= Error_E';Energy_error(:,1)=thick'; 

Energy_begin(:,2)=Enr(1,:)';Energy_begin(:,1)=thick'; 

Energy_end(:,2)=Enr(size,:);Energy_end(:,1)=thick'; 

%Leakage_current 

  

Energy_begin=Energy_begin' 

Energy_end=Energy_end' 

voltage_end=ydataxk(end_of_time,:) 

  

Energy_loss=Energy_loss' 

Energy_error=Energy_error' 

  

display('--------------End-------------------') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                                                                                                                                                 % 

%                    Discharging Profile of Supercap knowing thickness                                           % 

%                    of blocking layer (Same initial energy density) 

%                     July 2013 - Research                                                                                           % 

%                     Author: Tete Tevi                                                                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Author : Tete Tevi, July 2013 (Matlab Version: MATLAB R2010a) 

  

% Nota: First copy and paste your self discharge data in two new .txt files and 

% save them in the same folder where this code is saved. Run the code.  

% This code needs the Ezyfit toolbox to be installed. 

  

  

%% User interface 

  

  

clear all;clc;close all; 

prompt1 = {'Enter "No blocking layer" file name:'}; 

dlg_title1 = 'Text File Name'; 

num_lines1 = 1; 

def1 = {'NoPPO.txt'}; 

file_name1= inputdlg(prompt1,dlg_title1,num_lines1,def1); 
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close all; 

prompt2 = {'Enter "with blocking layer" file name:'}; 

dlg_title2 = 'Text File Name'; 

num_lines2 = 1; 

def2 = {'PPO.txt'}; 

file_name2= inputdlg(prompt1,dlg_title2,num_lines2,def2); 

%V_ch=input('Charging Voltage (Volts)='); 

cycle=input('Number of Thicknes Inputs = '); % discharging cyles 

thick=input('Thicknesses {th1 th2 ... #}(nanometer(s)) = ');% Charging voltages 

display(' '); 

display('-----------------------------'); 

  

display('Note on PPO on Y-Carbon: Dielectric constant=3.5 '); 

display('--Blocking layer thickness(nm)=1.5'); 

display('-- Specific Capacitance before blocking layer(F/g)=12.99');display('--Specific 

Capacitance after blocking layer(F/g)=5.7'); 

display('-----------------------------'); 

display(' '); 

thb=input('blocking layer thickness (in nanometers)= '); 

diek=input('Dielectrique constant of the blocking layer= '); 

% display('Note: PPO dielectric constant=3.5'); 

C1=input('Specific Capacitance before blocking layer(F/g)= '); 

C2=input('Specific Capacitance after blocking layer(F/g)= '); 

%% Load data 

data1 = load(file_name1{1});datNoPPO =data1; 

data2 = load(file_name2{1});datPPO =data2; 

V_ch=data1(1,2); 

  

size=size(datNoPPO); 

size=size(1); k=1;last_time=size; 

 for i=1:size; % Sampling 

 j=50*(i-1)+1; 

  

      if j > size 

      else 

      dataNoPPO(k,:)= datNoPPO(j,:); 

      dataPPO(k,:)= datPPO(j,:); 

       

      end 

k=k+1; 

 end 

  

%% Curve fitting 

xdataNoPPO=dataNoPPO(:,1); 

ydataNoPPO=dataNoPPO(:,2);        
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xdataPPO=dataPPO(:,1); 

ydataPPO=dataPPO(:,2);        

    

%% 

figure(1) 

plot(xdataNoPPO,ydataNoPPO,'*'); 

%legend('=Experimental Data; V(t)=fitted Curve'); 

title(' Curve Fitting - Activation controlled Faradaic-No blocking layer ') 

xlabel('t(s)') 

ylabel('V(volt)') 

  

  

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

legend('Experimental Data',' V(t)=fitted Curve  ') 

  

param=getfield(lastfit, 'm'); 

  

a=param(1);b=param(2);c=param(3); 

  

dvdt = diff(ydataNoPPO)./diff(xdataNoPPO); %% take the discrete derivative 

  

  

k0=-dvdt./ydataNoPPO(1:end-1); 

  

%plot(ydataNoPPO(1:end-1),k0,'r--') 

%  t_prime=xdata+c; 

%  for i=1:size(xdata); 

%  dv_dt(i)=-b/t_prime(i); 

%  k0(i)=-dv_dt(i)/ydata(i); 

%   

%% 

figure(2) 

 plot(ydataNoPPO(1:end-1),k0,'b--');% ,'*' 

title(' k0 Versus Voltage - No blocking layer') 

xlabel('V(Volt)') 

ylabel('ko') 

  

showfit('ko(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

legend(' Experimental Data',' fitted Curve'); 

param=getfield(lastfit, 'm'); 

  

aNo=param(1);tauNo=param(2); 

  

  

  

%% Write Ko(v) to text file 
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koNv(:,1)=xdataNoPPO(1:end-1); 

koNv(:,2)=k0'; 

  

  

fileID = fopen('Ko(v)NoPPO.txt','w'); 

%fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 

fprintf(fileID,'%6.2f %12.8f\n',koNv); 

fclose(fileID); 

  

  

%% 

figure(11) 

plot(xdataPPO,ydataPPO,'*'); 

%legend('=Experimental Data; V(t)=fitted Curve'); 

title(' Curve Fitting - Activation controlled Faradaic- blocking layer ') 

xlabel('t(s)') 

ylabel('V(volt)') 

  

  

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

  

legend(' Experimental Data',' fitted Curve  ') 

param=getfield(lastfit, 'm'); 

  

a=param(1);b=param(2);c=param(3); 

  

dvdt = diff(ydataPPO)./diff(xdataPPO); %% take the discret derivative 

k0=-dvdt./ydataPPO(1:end-1); 

%plot(ydataPPO(1:end-1),k0,'r--') 

%  t_prime=xdata+c; 

%  for i=1:size(xdata); 

%  dv_dt(i)=-b/t_prime(i); 

%  k0(i)=-dv_dt(i)/ydata(i); 

%   

%% 

figure(12) 

 plot(ydataPPO(1:end-1),k0,'b--');% ,'*' 

title(' k0 Versus Voltage - blocking layer') 

xlabel('V(Volt)') 

ylabel('ko') 

 showfit('ko(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

  

legend(' Experimental Data',' fitted Curve  ') 

paramk=getfield(lastfit, 'm'); 

  

ap=paramk(1);taup=paramk(2); 
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%% Write Ko(v) to text file 

kov(:,1)=xdataPPO(1:end-1); 

kov(:,2)=k0'; 

  

  

fileID = fopen('Ko(v)PPO.txt','w'); 

%fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 

fprintf(fileID,'%6.2f %12.8f\n',kov); 

fclose(fileID); 

  

for l=1:cycle; 

%% Beta Estimation (P.624 Electrochemical methods...Allen J. Bard book) Electron transfer by 

tunneling through blocking films 

% knowing a specific thickness in nanometer 

   

mm=(1/tauNo-1/taup)/(thb*1e-9);nn=-log(ap/aNo)/(thb*1e-9); 

  

th=thick(l); 

Vol=0:0.001:V_ch;Vol=Vol'; 

% size=size(Vol); 

% size=size(1); 

  

for i=1:length(Vol); 

kx(i)=aNo*exp(Vol(i)*(1/tauNo))*exp(-th*1e-9*mm*Vol(i)-th*1e-9*nn); 

end 

figure(32) 

 plot(Vol,kx,'b--');% ,'*' 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('ko') 

  

  

showfit('ko(V)=a*exp(V/tau)','fitlinewidth',2,'fitcolor','red'); 

  

paramx=getfield(lastfit, 'm'); 

  

ax=paramx(1);taux=paramx(2); 

axk(l)=ax;tauxk(l)=taux; 

% %% Write Kox(v) to text file 

% kox(:,1)=Vol; 

% kox(:,2)=kx'; 

%  

%  

% fileID = fopen('Kox(v)PPO.txt','w'); 

% %fprintf(fileID,'%6s %12s\n','v','Ko(v)'); 
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% fprintf(fileID,'%6.2f %12.8f\n',kox); 

% fclose(fileID); 

  

%% Plotting V versus t 

  

  

ode1=@(x,y)-axk(l)*y*exp(y/tauxk(l)); 

% Call the solver with function Name,  

  

end_of_time=data1(last_time,1); 

{x,y}=ode45(ode1,{0:end_of_time},V_ch); % {x,y}=ode45(ode1,{0:0.1:size},V_ch);  

% Plotting Segment 

xdataxk(:,l)=x;ydataxk(:,l)=y; 

figure (41) 

plot(x,y,'b--') 

  

xlabel('t(s)') 

ylabel('V(volt)') 

  

%title('Solution to dV/dt = -ko*V for desired thickness') 

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

paramvx=getfield(lastfit, 'm'); 

  

avx=paramvx(1);bvx=paramvx(2);cvx=paramvx(3); 

avxk(l)=avx;bvxk(l)=bvx;cvxk(l)=cvx; 

  

end 

  

%% Plot all the graphs 

  

Markert={':','-','--','-.','-*','-+','-o','-^','-d','-v','-s','-<','->','-p','-h'}; 

  

 siz=length(xdataxk); 

k=1; 

 for i=1:siz; %Sampling 

 j=100*(i-1)+1; 

  

      if j > siz 

      else 

      xdatxk(k,:)= xdataxk(j,:); 

      ydatxk(k,:)= ydataxk(j,:); 

       

      end 

k=k+1; 

 end 
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for l = 1:cycle 

         

    legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    figure (7) 

    plot(xdatxk(:,l),ydatxk(:,l),mark) 

    legend(legendInfo) 

    xlabel('t(s)') 

    ylabel('V(volt)') 

    %title('Self discharge voltage profiles for different thicknesses') 

    hold on 

end 

  

 for l = 1:cycle 

    Vol=0:0.025:V_ch;Vol=Vol'; 

    

     legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    figure(33) 

 plot(Vol,axk(l)*exp(Vol/tauxk(l)),mark);% ,'*' 

 legend(legendInfo) 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('ko(1/s)')  

hold on 

end 

  

%% Energy  

epsi=8.854187817620e-12; 

  

Cbl=1/(1/C2-1/C1); 

  

for l = 1:cycle 

      Vol=(0:0.001:V_ch)'; 

    siz=length(Vol); 

k=1; 

  for i=1:siz; 

 j=100*(i-1)+1; 

  

      if j > siz 

      else 

      Vot(k,:)= Vol(j,:); 

      Vot(k,:)= Vol(j,:); 

       

      end 

k=k+1; 
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  end 

for i=1:length(Vot); 

 Vots(i)=Vot(i)*Vot(i); 

 Vots=Vots'; 

end 

  

   legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    Cbll(l)=Cbl*thb/thick(l); 

    En=(0.5*Vots/(1/C1+1/Cbll(l)))'; 

   % Enn(:,l)=En;% Find a solution 

    figure(34) 

 plot(Vot,En,mark);% ,'*' 

 legend(legendInfo) 

 %title(' k0 Versus Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('E(J/g)')  

hold on 

end 

  

for l = 1:cycle 

size=length(ydatxk); 

for i=1:size; 

datavk= ydatxk(:,l); 

 datvk(i)=datavk(i)*datavk(i); 

  

end 

  

     legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    Cbll(l)=Cbl*thb/thick(l); 

    Enr(:,l)=(0.5*(datvk)/(1/C1+1/Cbll(l)))'; 

    Vcbl(:,l)=V_ch*(1+C1/Cbll(l))^0.5; % Comparison voltage 

    delta_E(l)=abs(Enr(1,l)-Enr(size,l)); 

    Error_E(l)=delta_E(l)/Enr(1,l); 

         

    figure(35) 

 plot(ydatxk(:,l),Enr(:,l),mark,'Linewidth',1.25);% ,'*' 

 legend(legendInfo) 

 title(' Energy Versus discharge Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('E(J/g)')  

hold on 

  

figure(36) 

 plot(xdatxk(:,l),Enr(:,l),mark,'Linewidth',1.25);% ,'*' 
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 legend(legendInfo) 

 title(' Energy Versus Time - for the desired thickness') 

xlabel('t(s)') 

ylabel('E(J/g)')  

hold on 

end 

  Energy_loss(:,2)= delta_E';Energy_loss(:,1)=thick'; 

Energy_error(:,2)= Error_E';Energy_error(:,1)=thick'; 

Energy_loss 

Energy_error 

  

 %% Plotting V versus t 

  

 for l = 1:cycle 

ode1=@(x,y)-axk(l)*y*exp(y/tauxk(l)); 

% 

end_of_time=data1(last_time,1); 

{x,y}=ode45(ode1,{0:end_of_time},Vcbl(l)); % {x,y}=ode45(ode1,{0:0.1:size},V_ch);  

% Plotting Segment 

xdataxkl(:,l)=x;ydataxkl(:,l)=y; 

figure (411) 

plot(x,y,'b--') 

  

xlabel('t(s)') 

ylabel('V(volt)') 

  

%title('Solution to dV/dt = -ko*V for desired thickness') 

showfit('V(t)=a-b*log(t+c)','fitlinewidth',2,'fitcolor','red'); 

paramvxl=getfield(lastfit, 'm'); 

  

avxl=paramvxl(1);bvxl=paramvxl(2);cvxl=paramvxl(3); 

avxkl(l)=avxl;bvxkl(l)=bvxl;cvxkl(l)=cvxl; 

  

end 

  

%% Plot all the graphs 

  

Markert={':','-','--','-.','-*','-+','-o','-^','-d','-v','-s','-<','->','-p','-h'}; 

  

  

siz=length(xdataxkl); 

k=1; 

 for i=1:siz; 

 j=50*(i-1)+1; 

  

      if j > siz 
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      else 

      xdatxkl(k,:)= xdataxkl(j,:); 

      ydatxkl(k,:)= ydataxkl(j,:); 

       

      end 

k=k+1; 

 end 

  

for l = 1:cycle 

         

    legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    figure (712) 

    plot(xdatxkl(:,l),ydatxkl(:,l),mark) 

    legend(legendInfo) 

    xlabel('t(s)') 

    ylabel('V(volt)') 

    %title('Self discharge voltage profiles for different thicknesses') 

    hold on 

end 

  

for l = 1:cycle 

size=length(ydatxkl); 

for i=1:size; 

datavkl= ydatxkl(:,l); 

 datvkl(i)=datavkl(i)*datavkl(i); 

  

end 

     legendInfo{l} = {'thickness = ' num2str(thick(l)) 'nm'};  

    mark=Markert{l}; 

    Cbll(l)=Cbl*thb/thick(l); 

    Enrl(:,l)=(0.5*(datvkl)/(1/C1+1/Cbll(l)))'; 

     

    deltal_E(l)=abs(Enrl(1,l)-Enrl(size,l)); 

    Errorl_E(l)=deltal_E(l)/Enrl(1,l); 

     

     

     figure(351) 

 plot(ydatxkl(:,l),Enrl(:,l),mark,'Linewidth',1.25);% ,'*' 

 legend(legendInfo) 

 title(' Energy Versus discharge Voltage - for the desired thickness') 

xlabel('V(Volt)') 

ylabel('E(J/g)')  

hold on 

  

figure(361) 
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 plot(xdatxkl(:,l),Enrl(:,l),mark,'Linewidth',1.25);% ,'*' 

 legend(legendInfo) 

 title(' Energy Versus Time - for the desired thickness') 

xlabel('t(s)') 

ylabel('E(J/g)')  

hold on 

end 

  

 Energyl_loss(:,2)= deltal_E';Energyl_loss(:,1)=thick'; 

Energyl_error(:,2)= Errorl_E';Energyl_error(:,1)=thick'; 

Energyl_begin(:,2)=Enrl(1,:)';Energyl_begin(:,1)=thick'; 

Energyl_end(:,2)=Enrl(size,:);Energyl_end(:,1)=thick'; 

%Leakage_current 

Energyl_begin=Energyl_begin' 

Energyl_end=Energyl_end' 

voltagel_end=ydataxkl(end_of_time,:) 

  

Energyl_loss=Energyl_loss' 

Energyl_error=Energyl_error' 

display('--------------End-------------------') 
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